SIGGRAPH 2002 Course 36 Notes
Real-Time Shading

Presenters

Marc Olano
Member of Technical Staff
SGI

John C. Hart

Associate Professor
Department of Computer Science
University of Illinois, Urbana-Champaign

Wolfgang Heidrich
Assistant Professor
Department of Computer Science
The University of British Columbia

Bill Mark
NVIDIA Corp.

Ken Perlin

Associate Professor
Department of Computer Science
NYU

Course Description:

Shading languages, long valued for off-line rendering and production animation, are just becoming
possible on interactive graphics hardware. A wide spectrum of applications are poised to use them --
scientific visualization, product design, games, and more. Initial shading hardware provides only
low-level, hard-to-use interfaces. This course explains the variety of techniques to build full shading
languages on past, current, and future graphics hardware. Participants will see systems in action and
learn basic techniques in a series of technology overviews. The course concludes with a panel session
allowing free discussion between the speakers and audience.

Prerequisites:

This course assumes working knowledge of a modern real-time graphics API like OpenGL. The
participants are also assumed to be familiar with the concepts of procedural shading and shading
languages.

Syllabus

I. Background and Building Blocks

A. Introduction (Olano - 20 min)
1. What’s real-time?
2. What’s procedural shading?
3. Why do we want real-time procedural shading?
4. Overview of hardware shading techniques

B. Noise (Perlin - 40 min)
1. Uses of band-limited noise
2. Consistency vs. the proliferation of different noise functions
3. A noise function standard
4. Hardware design

C. Hardware shading effects (Heidrich - 45 min)
1. BRDFs and reflectance models
2. Uses of environment maps
3. Shadows
4. Bump mapping
5. Demo of these effects

break

II. Shading Language Systems

A. In the beginning: the pixel stream editor (Perlin - 30 min)
1. Shading expressions vs. shading languages
2. Pixel stream editor architecture

B. PixelFlow shading (Olano - 40 min)
1. SIMD rendering technology overview
2. PixelFlow hardware description
3. Mapping the pfman language to PixelFlow
4. OpenGL extensions
5. What we learned (or should have learned)
6. PixelFlow shading video

C. Procedural Solid Texturing (Hart - 35 min)
1. Real-time hardware for antialiased parameterized solid texturing
2. Real-time procedural solid texturing software using the solid map
3. Demo

break

D. Shading through multi-pass rendering (Olano - 35 min)
1. Multi-pass rendering overview
2. How multi-pass allows general shading
3. Limitations of current hardware
4. OpenGL Shader demo

E. Single pass and multiple complex pass shading (Mark - 40 min)
1. Vertex and fragment shading
2. A unified system for programmable vertex and fragment shading
3. Compiling to programmable fragment hardware (register combiners)
4. Compiling to programmable vertex hardware
5. Stanford RTSL demo
F. Sampling procedural shaders (Heidrich - 30 min)
1. Choosing sampling rates and resolutions
2. View dependent effects
3. Hardware rendering as texture

break

III. Future
A. Multi-pass RenderMan (Olano - 40 min)
1. Necessary hardware extensions
2. Can it be real-time?
3. Is RenderMan appropriate for real-time shading?
B. Analysis of shading pipelines (Hart - 35 min)
1. Grammar for articulating shading pipelines
2. Application to existing pipelines
3. Possibilities for future pipelines
IV. Panel-style Q&A (All - 30 min)

Contents

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Introduction

Marc Olano

Noise Hardware

Ken Perlin

Hardware Shading Effects

Wolfgang Heidrich

In the beginning: The Pixel Stream Editor
Ken Perlin

PixelFlow Shading

Jon Leech, "OpenGL Extensions and Restrictions for PixelFlow", Technical
Report TR98-019, Department of Computer Science, University of North
Carolina at Chapel Hill, 1997.

©1997 UNC, Chapel Hill. Included here by permission.

Marc Olano, "PixelFlow Shading Language"
Marc Olano, "Implementing PixelFlow Shading"
Procedural Solid Texturing

John C. Hart, Nate Carr, Masaki Kameya, Stephen A. Tibbitts, Terrance J.
Coleman, "Antialiased Parameterized Solid Texturing Simplified for
Consumer-Level Hardware Implementation”, Proceedings of the 1999
Eurographics/SIGGRAPH Workshop on Graphics Hardware.

©1999 ACM, included here by permission.

Nathan A. Carr and John C. Hart, "Real-Time Procedural Solid Texturing"
John C. Hart, "Perlin Noise Pixel Shaders"

Shading Through Multi-Pass Rendering

Mark S. Peercy, Marc Olano, John Airey, P. Jeffery Ungar, "Interactive
Multi-Pass Programmable Shading", Proceedings of SIGGRAPH 2000 (New
Orleans, Louisiana, July 23-28, 2000). In Computer Graphics, Annual

Conference Series, ACM SIGGRAPH, 2000.
©1999 ACM, included here by permission.

Marc Olano and Bob Kuehne, "Level-of-Detail Shaders"
©2002 SGI, included here by permission.

Marc Olano, "Interactive Shading Language (ISL) Language Description”, In
OpenGL Shader 2.4 distribution, SGI, 2001.
©2002 SGI, included here by permission.

1- 1
2- 1
3.1
4- 1
5- 1
5-41
5-47
6- 1
6-11
6-19
7- 1
7-9
7-17

Chapter 8: Complex Single and Multi-Pass Shading
Bill Mark, "Stanford Real-time Procedural Shading System" 8- 1
Kekoa Proudfoot and Eric Chan, "Real-Time Shading Language v6" 8- 8
Bill Mark and C. Philipp Schloter, "Shading System Immediate-Mode API v2.2" 8 - 36
Chapter 9: Sampling Procedural Shaders

Wolfgang Heidrich 9-1
Chapter 10: Multi-Pass RenderMan
Marc Olano 10 - 1

Chapter 11: Analysis of Shading Pipelines

John C. Hart and Peter K. Doenges, "A Framework for Analyzing Real-Time 11- 1
Advanced Shading Techniques"

Chapter 12: Bibliography
A Collection of Useful References 12- 1

Chapter 1

Introduction

Marc Olano

Introduction

Marc Olano
SGl

Procedural shading is a proven rendering technique in which a short user-written
procedure, called a shader, determines the shading and color variations across each
surface. This gives great flexibility and control over the surface appearance.

The widest use of procedural shading is for production animation, where has been
effectively used for years in commercials and feature films. These animations are
rendered in software, taking from seconds to hours per frame. The resulting frames are
typically replayed at 24-30 frames per second.

One important factor in procedural shading is the use of a shading language. A shading
language is a high-level special-purpose language for writing shaders. The shading
language provides a simple interface for the user to write new shaders. Pixar's
RenderMan shading language [Upstill90] is the most popular, and several off-line
renderers use it. A shader written in the RenderMan shading language can be used with
any of these renderers.

Meanwhile, polygon-per-second performance has been the major focus for most
interactive graphics hardware development. Only in the last few years has attention been
given to surface shading quality for interactive graphics. Recently, great progress has
been made on two fronts toward achieving real-time procedural shading. This course will
cover progress on both. First, graphics hardware is capable of performing more of the
computations necessary for shading. Second, new languages and machine abstractions
have been developed that are better adapted for real-time use.

Interactive graphics machines are complex systems with relatively limited lifetimes. Just
as the RenderMan shading language insulates the shading writer from the implementation
details of the off-line renderer, a real-time shading system presents a simplified view of
the interactive graphics hardware. This is done in two ways. First, we create an abstract
model of the hardware. This abstract model gives the user a consistent high-level view of
the graphics process that can be mapped onto the machine. Second, a special-purpose
language allows a high-level description of each procedure. Given current hardware
limitations, languages for real-time shading differ quite a bit from the one presented by
RenderMan. Through these two, we can achieve device-independence, so procedures
written for one graphics machine have the potential to work on other machines or other
generations of the same machine.

1. Procedural techniques

Procedural techniques have been used in all facets of computer graphics, but most
commonly for surface shading. As mentioned above, the job of a surface shading
procedure is to choose a color for each pixel on a surface, incorporating any variations in

color of the surface itself and the effects of lights that shine on the surface. A simple
example may help clarify this.

We will show a shader that might be used for a brick wall (Figure 1.1). The wall is to be
described as a single polygon with texture coordinates. These texture coordinates are not
going to be used for image texturing: they are just a pair of numbers that parameterize
the position on the surface.

The shader requires several additional parameters to describe the size, shape and color
of the brick. These are the width and height of the brick, the width of the mortar between
bricks, and the colors for the mortar and brick (see Figure 1.1). These parameters are
used to fold the texture coordinates into brick coordinates for each brick. These are (0,0)
at one corner of each brick, and can be used to easily tell whether to use brick or mortar
color. A portion of the brick shader is shown in Figure 1.2 (this shader happens to be
written in the pfman language, detailed in Chapter 3). In this figure, ss and tt are local
variables used to construct the brick coordinates. The simple bricks that result are shown

in Figure 1.3a.
m— m(}ltd[

Y

moitar

< width —— A

Figure 1.1. Size and shape parameters for brick shader

// find row of bricks for this pixel (row 1is 8-bit integer)
fixed<8,0> row = tt/height;

// offset even rows by half a row
if (row % 2 == 0) ss += width/2;

// wrap texture coordinates to get "brick coordinates"
ss = ss % width;
tt = tt % height;

// pick a color for this pixel, brick or mortar
float surface color[3] = brick color;
if (ss < mortar || tt < mortar)

surface _color = mortar_color;

Figure 1.2. Portion of code for a simple brick shader

One of the real advantages of procedural shading is the ease with which shaders can be
altered to produce the desired results. Figure 1.3 shows a series of changes from the
simple brick shader to a much more realistic brick. Several of these changes demonstrate
one of the most common features of procedural shaders: controlled randomness. With
controlled use of random elements in the procedure, this same shader can be used for
large or small walls without any two bricks looking the same. In contrast, an image texture
would have to be re-rendered, re-scanned, or re-painted to handle a larger wall than
originally intended.

Figure 1.3. Evolution of a brick shader. a) simple version. b) with indented mortar. c) with
added graininess. d) with variations in color from brick to bnck e) with color variations
within each brick.

Procedural shading can also be used to create shaders that change with time or distance.
Figure 1.4a and b are frames from a rippling mirror animated shader. Figure 1.4c shows a
yellow brick road where high-frequency elements fade out with distance. Figure 1.4d and
e show a wood shader that uses surface position instead of texture coordinates. Figure
1.4d is also lit by a procedural light, simulating light shining through a paned window.

Figure 1.4. Examples of shaders. a+b) two frames of rippling mirror. c) yellow brick road.
d+e) wood volume shader.

2. What's to come

These notes are divided into fifteen chapters, following a rough progression from the past
of procedural shading, through present-day systems and on to research that may
illuminate the future. We provide the following as a rough guide to the connection between
chapters in these notes, the course presenters, and what you might expect to find there:

Chapter (Marc

1 Olano): This introduction.

Chapter
2

Chapter
3

Chapter
4

Chapter
5

Chapter
6

Chapter
7

Chapter
8

Chapter
9

Chapter
10

Chapter
11

Chapter
12

(Ken
Perlin):

(Wolfgang
Heidrich):

(Ken
Perlin):

(Marc
Olano):

(John
Hart):

(Marc
Olano):

(Bill Mark):

(Wolfgang
Heidrich):

(Marc

Olano):

(John
Hart):

(All):

Noise, one of the basic building blocks for
procedural shading, and how it might be
implemented efficiently.

Hardware shading effects, the building blocks for
later procedural shading systems.

Background on the beginnings of procedural
shading and how (even then) it was influenced by
hardware concerns.

The shading capabilities of PixelFlow, the first
real-time shading system.

Several methods for producing solid textures on
hardware.

Multiple rendering passes using the building
blocks from Chapter 3 can be put together to
create a full-fledged real-time shading system

Some of the latest developments in making
graphics hardware more flexible and
programmable, and a shading language compiler
that gives the same high-level interface for both
multi-pass shading as introduced in Chapter 7
and shading hardware extensions as introduced
in this chapter.

Some issues that make evaluating shading
expressions into a texture, one of the most
common techniques for real-time shading,
harder than it looks.

How multi-pass rendering techniques could be
expanded to support a full-featured shading
language like RenderMan.

A formal notation for analysis of different real-
time shading techniques.

A collected bibliography of some of our favorite
papers.

Chapter 2

Noise Hardware

Ken Perlin

Noise Hardware

Introduction

Perlin Noise has been a mainstay of computer graphics since 1985
[EBERT98],[FOLEY96],[PERLINSS5], being the core procedure that enables procedural shaders to
produce natural appearing materials. Now that real-time graphics hardware has reached the point where
memory bandwidth is more of a bottleneck than is raw processing power, it is imperative that the lessons
learned from procedural shading be adapted properly to real-time hardware platforms.

The original implementation of Noise is fairly simple. First I will show how it is constructed, and various
ways it is used in shader programs to get different kinds of procedural textures. There will be pictures
and animations. Then I'll talk about several approaches to real-time implementation, so that Noise can be
used most effectively in game hardware and other platforms that should support Noise-intensive imagery
at many frames per second.

What's Noise?

Noise appears random, but isn't really. If it were really random, then you'd get a different result every
time you call it. Instead, it's "pseudo-random" - it gives the appearance of randomness.

Noise is a mapping from R" to R - you input an n-dimensional point with real coordinates, and it returns
a real value. Currently the most common uses are for n=1, n=2, and n=3. The first is used for animation,

the second for cheap texture hacks, and the third for less-cheap texture hacks. Noise over R% is also very
useful for time-varying solid textures, as I'll show later.

Noise is band-limited - almost all of its energy (when looked at as a signal) is concentrated in a small part
of the frequency spectrum. High frequencies (visually small details) and low frequencies (large shapes)
contribute very little energy. Its appearance is similar to what you'd get if you took a big block of random
values and blurred it (ie: convolved with a gaussian kernel). Although that would be quite expensive to
compute.

First I'll outline the ideal characteristics of a Noise function, then I'll review how the original Noise
function matches these characteristics (sort of). After that I'll outline how one might implement the
original Noise function in hardware, in an optimized way. Finally, I'll show a radically different approach
I've been taking to implementing Noise, with an eye toward standardizing on a visually better primitive
that can also run much faster in hardware.

There are two major issues involved in this adaptation: (i) A common procedural shading abstract
machine language, to enable the capabilities that were first introduced in [Perlin85], and subsequently
adapted by the motion picture special effects industry, and (ii) a standard, fast, robust, differentiable and
extensible Noise function contained in the instruction set of this abstract machine language. This chapter
addresses the second of these two issues.

The ideal Noise can be separated from the shortcomings of any particular implementation which aims to
approximate this ideal. [Perlin85] outlined a number of characteristics for an ideal Noise. Ideally a
hardware-implemented standard would conform to this ideal, without suffering from any shortcomings.

The traditional Noise algorithm, while very useful, had some shortcomings that would be of particular
consequence in a real-time setting and in a hardware implementation. I'll describe a new method that
suffers from none of these shortcomings. Shortcomings which are addressed include:

® Lack of a single standard reference implementation: Unlike the situation to date with software
versions of Noise, all implementations should ideally produce the same result for the same input, up
to the inherent limitation imposed by limited bit depth, on all platforms and implementations.

® Requiring many multiplies: The original formulation of Noise required, as a subset of its component
calculations, that a gradient be evaluated at each corner of a cube surrounding the input point. Each
gradient evaluation requires an inner product, which costs three multiplies, at each of eight cube
vertices, for a total of 24 multiplies. A multiply is expensive in its use of hardware, relative to such
other operations as bit manipulation and addition. In a hardware implementation, it would be greatly
advantageous to redefine Noise so that it does not require this large number of multiplies.

e Visually significant anisotropy: The Noise function is ideally a directionally insensitive (isotropic)
signal. However, the original implementation, because it consists of adjoining 3D tricubic patches,
contains visible directional artifacts which are an unavoidable consequence of its underlying
algorithm. This is also the case for approximations that mimic that implementation, such as nVidia's
recent Noise patch [NVIDIAOO].

Specifically, when these implementations of Noise are applied to a rotated domain, a casual viewer
of the result can easily pick out the orientation of the rotated coordinate grid. Ideally, it should be
impossible for a casual viewer to infer the orientation of the rotated coordinate system, when
presented with the texture image produced by Noise applied to a rotated domain.

® Gradient artifacts: The original Noise function uses a piecewise cubic blending function 3 £-27
in each dimension. When the Noise function uses this blending function, then visually noticable
discontinuities appear in the derivative of the Noise function along the 3D tricubic patch boundaries
of the Noise function's domain, since the derivative of the derivative of this blending function
contains a piecewise constant term.

* Difficulty of computing a derivative: The original Noise algorithm contains an associated derivative
function which is difficult to compute algorithmically, since it consists of a product of a linear
function with three cubic splines. In non-real time applications, the Noise derivative has generally
been approximated by evaluating differences of Noise at closely spaced sample points along the
three coordinate axes. This has required evaluating the Noise function four times. In a hardware
implementation such an approach would not only consume valuable gates, but would be impractical
for any method that used less than full floating point precision, since the use of difference methods
to compute derivatives requires high bit depth. It is desirable for a hardware Noise standard to
possess an associated derivative function that can be computable analytically, at a cost of a relatively
modest number of gates. This is particularly important when using Noise to compute normal
perturbations and other effects that use the derivative of Noise, as opposed to its value.

® Need for table memory: The original Noise algorithm relied on a number of table lookups, which are
quite reasonable in a software implementation, but which in a hardware implementation are
expensive and constitute a cost bottleneck, particularly when multiple instances of the Noise
function are required in parallel. Ideally a Noise implementation should not rely on the presence of
tables of significant size.

® Memory-limited extent of the volume tile: Noise is generally defined within a repeating volumetric
tile. In previous implementations, the extent of this tile has been limited by table size. Ideally Noise
should be based on a virtual volume which is scalable, inexpensively, to any extent.

® FExpense of generalizing to higher dimensions: The original implementation of Noise was based on a
cubic lattice. Moving to higher dimensions causes computation cost to more than double with each
additional dimension, since it requires moving to an n-dimensional hypercube lattice. In hardware,
this cost would be measured as a product of gate count and number of successive instruction cycles.
For example, the cost of Noise over four dimensions is at least twice the cost of Noise over three
dimensions. Quite soon it will be desirable to extend the standard from 3D Noise to 4D Noise (to
account for time-varying volume textures), and thereafter to 5D Noise (to specify textured BRDFs).
It is important to address this issue now.

® Lack of separation between signal and reconstruction: The original Noise presented the
pseudo-random gradient field (its "signal") and its tricubic interpolation scheme (its "reconstruction
filter") as a single functional object. It would be greatly advantageous for a method to allow these
two operations to be cleanly separable, so that other signals which share the same hardware and
abstract machine language can also use this reconstruction filter.

In non-real time applications, in which perfection of the final result is far more important than is
processing budget, such as is the case in the use of Noise for motion picture special effects, it is possible
to "fudge" some these artifacts by applying Noise multiple times. For example, as I mentioned in my
previous chapter, the procedural shaders for the scene depicting ocean waves in the recent film "The
Perfect Storm" combined about 200 shader procedures, each of which invoked Perlin Noise. In contrast,
for real-time applications, where the cost of every evaluation counts, it is crucial that Noise itself be
artifact free, that its derivative be directly computable, and that it incur a relatively small computational
cost.

The original algorithm:

To make Noise run fast, I originally implemented it as a pseudo-random spline on a regular cubic grid
lattice. Now we'll examine this approach in some detail.

1. Given an input point
2. For each of its neighboring grid points:

o Pick a "pseudo-random" direction vector
o Compute linear function (dot product)

3. Linearly combine with a weighted sum, using a cubic ease curve in each dimension, such as 3t2-2¢3,
as the interpolant.

The 8 neighbors in three dimensions:

In three dimensions, there are eight surrounding grid points. To combine their respective influences we
use a trilinear interpolation (linear interpolation in each of three dimensions).

In practice this means that once we've computed the 3t2-2t3 cross-fade function in each of X,y and z,
respectively, then we'll need to do seven linear interpolations to get the final result. Each linear
interpolation a+t(b-a) requires one multiply.

In the diagram, the six white dots are the results of the first six interpolations: four in x, followed by two
in y. Finally, one interpolation in z gives the final result

To compute the pseudo-random gradient, we can first precompute a table of permutations P[n], and a
table of gradients G[n]:

G =GJ[(i+P[(j+P[k])

modn])modn]

A speedier variation would be to let n be a power of two. Then, except for bit masking (which is
essentially free), the computation reduces to:

G=G[i+P[j+P[k]]]
Using in expressions to get texture

For review, here is a very short set of representative examples to show how Noise can be used to make
interesting textures.

e Eg: fractal sums
e 1/f noise: rock, mountains, ...
* 1/f abs(noise): fire, marble, clouds, ...

noise sin(x+sum 1/f(Inoisel))

B

A

sum 1/f(noise) sum 1/f(Inoisel)

noise

sum 1/f(noise)

sum 1/f(Inoisel)

sin(x + sum 1/f(Inoisel))

Using 3D noise to animate 2D turbulent flow

You can also create time-varying animations by using the third dimension of Noise to modulate a texture
over time. The following are single frames from pseudo-turbulent animations that were created by
dragging, over time, a three dimensional Noise field through the plane z=0. At each animation frame, the
intersection of Noise with the (X,y) plane was used to create a flow-perturbation texture. The coherently
pseudo-random movement of Noise creates time-coherent pseudo-random flame-like or cloud-like
appearance of flow.

Flame: Noise scales in X,y, translates in z

Clouds: Noise translates in x and z

Creating these textures is really quite simple. Below is an image of the gradient field used to create the
cloud texture, before perturbation:

Clouds without 1/f(Inoisel) perturbation

Optimizing for hardware

Recently I've been looking at the question: what would it take to port the Noise function to a direct
hardware implementation? There have been some attempts to speed up Noise by relying on
non-traditional instruction sets for various computing chips, first by Intel [INTEL96], to capitalize on
their MMX instruction set, then more recently by nVidia [NVIDIAOO], to make use of the capabilities of
their Vertex processing instruction set (although this only helps for triangle vertices, not for texture
samples).

But ideally one would like to implement Noise as a primitive operation, directly in hardware, so that it
may be invoked as many times as possible, at the texture sample evaluation level, without becoming a
computational bottleneck, and perhaps even for volume filling textures [PERLIN89]. What would this
require?

I found that it could be fairly inexpensive, if you worked with a restricted bit depth. For example, if you
assume an 8.8 bit input in each of X,Y,Z (ie: each component is in a tiling integer lattice which is 256
units on a side, and there are 256 domain steps within each unit), and an 8 bit output range, then you can
implement Noise in under 10K gates, which is a remarkably small number.

The basic approach is to do a pipelined architecture, as in the diagram below. In that diagram:
* i jkrepresent the integer (most significant 8 bits) of the input,

* u,v,wrepresent the fractional (least significant 8 bits) of the input,
e [represents a computational unit that produces a hash value for one integer component,

* H represents a unit that uses this hash value, together with the three fractional components, to
produce a contribution from each of the eight corners of the surrounding unit cube,

e Srepresents a unit that computes the cubic interpolant function for each dimension,

e [represents a linear interpolator.

The module can be pipelined so that a new Noise evaluation can be calculated at each clock cycle, with a
latency of about twenty clock cycles.

& z

® T
Yo HHHHBHAHA
G} — —_— —_— — —
\\\D—ﬁ—ﬁ—-ﬁ—-ﬁ—ﬁ—y—-ﬁ—-ﬁ
@} — — —
— — — — - - o
5 I I I I
s r I
5 I

A better method:

Ultimately though, the goals I outlined earlier are not satisfied by my original approach to Noise. So I've
been developing a new approach. This method of implementing Noise conforms better to the ideal Noise
specification of [Perlin85]. While providing the same general "look" as previous versions of Noise, it
also:

e provides a single uniform standard result on any platform,
* is visually isotropic, unlike the original algorithm,
* does not require significant table space to compute good pseudo-random gradients,

can have an arbitrarily large extent for its repeating virtual tile, at very low cost,
does not require multiplies to evaluate gradient at surrounding grid vertices,

does not produce visible grid artifacts,

does not produce visible artifacts in the derivative,

is cheaper to compute than is the original algorithm,

allows for a direct analytic computation of derivative at reasonable cost,

can be generalized to higher dimensions at relatively small computational expense.

I'll describe the method in two parts:

* A pseudo-random signal generator primitive, and
* A recontruction primitive.

This separation enables other signal generators that reside on the same graphics hardware chip to share
the same reconstruction hardware and API.

The image below is a side-by-side visual comparison of "traditional” Noise with the method described
here. The four quadrants of the image represent, respectively:

df/dx = d(Noise(xyz))/dx df/dy = d(Noise(xyz))/dy
df/dz = d(Noise(xyz))/dz f(xyz) = Noise(xyz)

Each of these quadrants is divided into four sub-quadrants. These represent, respectively:

old Noise atz=0 new Noiseatz=0

old Noise at z= 0.5 new Noise at z = 0.5

old dfjdx at 2=0.0 new df/dx at z=0.1 old dfjdy at z=0.0 new dfjdx at z=0.4

old dfpdx at 2=0.5 new dfjdx at 2=0.5 old dfjdy at z=0.5 new df jdx at 2=0.5

old dfjdz at 2=0.0 new df/dz at 2=0.(old fixyz) at 2=0.0

The old and new Noise look roughly the same when evaluated at z=0, the major visual difference being
that the new Noise implementation is visually isotropic. Specifically, if the picture is arbitrarily rotated, it
is not possible for an observer examining any subportion of the resulting texture to infer, by visual
examination, the original orientation of the image produced by new Noise, whereas it is possible for an
observer to infer this orientation for the image produced by the old Noise.

Note also the appearance of the derivative with respect to z. In the old Noise this degenerates into an
image of fuzzy squares.

Below is the same comparison, this time with the domain magnified by a factor of four. Note the artifacts
in df/dx and in df/dy in old Noise, which appear as thin vertical streaks in df/dx and as thin horizontal

streaks in df/dy. This is due to the use of the piecewise cubic interpolant function 3 t2 -2 t3, whose

derivativeis 6t - 6 t2, which contains a linear term. The presence of this linear term causes the derivative
of the Noise function to be discontinuous at cubic cell boundaries.

old df/dx at 2=0.0 new dfjdx at 2=0. . new dfjdx at 2=0.

old dfjdx at z=0.5 new df/dx at 2=0. old dfjdy at 2=0.5 new df/dx at 2=0.

ald df/dz ar 2=0.0 new df/dz at 2=0.4 old fixyz) at 2=0.0 new fixy2) at 2=0.4
| .

old dfjdz at 2=0.5 new df/dz at 2=0.9 old fixyz) at 2=0.5

Components of the new method:

The new method is a result of combining several different ideas together. When these ideas are used in
combination, the result is a far superior Noise function that satisfies all of the requirements outlined
above:

1. Rather than using a table lookup scheme to compute the index of a pseudo-random gradient at each
surrounding vertex, the new method uses a bit-manipulation scheme that uses only a very small
number of hardware gates.

2. Rather than using a cubic interpolation grid, the new method uses a simplicial grid. This confers two
advantages during reconstruction:

1. Only four component evaluations need be done per Noise evaluation (one per contributing
vertex), rather than the eight evaluations required in a cubic lattice, and

2. The axis aligned visual impression of a grid structure is replaced by a far less visually noticable
simplicial packing structure.

Rather than using a tricubic interpolation function, this interpolation scheme uses a spherically
symmetric kernel, multiplied by a linear gradient, at each component surrounding vertex. This
confers three advantages:

1. The new method contains no directional artifacts due to interpolation function;
2. The new method contains no directional or discontinuity artifacts in gradient;
3. Using the new method, it is practicable to compute the derivative function directly.

Rather than using inner products, with their attendent (and expensive) multiplies, to convert each
index into an actual pseudo-random gradient, the new reconstruction method uses a method that
produces more visually uniform results, and is easier to integrate into a derivative calculation, while
requiring no multiplies at all.

Each of these changes is now described in more detail:

The new pseudo-random generator primitive:
Computing index of pseudorandom gradient

Given an integer lattice point (i,j,k), the new method uses a bit-manipulation algorithm to generate a six
bit quantity. This six bit quantity is then used to generate a gradient direction. The six bit quantity is
defined as the lower six bits of the sum:

b(i,j,%k,0) + b(j,k,1i,1) + b(k,1i,3,2) + b(i,J,k,3) +
b(j,k,1i,4) + b(k,1i,3,5) + b(i,3j,k,6) + b(3, k,1,7)

where b() uses its last argument as a bit index into a very small table of bitPatterns.
define b (i, j, k,B)
patternIndex = 4 * bity (i) + 2 * bity(3j) + bitg(k)
return bitPatterns[patternIndex]
and where the bit pattern table is defined as:

bitPatterns([] = { 0x15,0x38,0x32,0x2c,0x0d,0x13,0x07,0x2a }

Using index to derive pseudorandom gradient

The new method converts a six bit pseudo-random index into a visually uniform gradient vector which is
easy to integrate into a derivative calculation and which requires no multiplies to compute. The key
innovation is to use values of only zero or one for the gradient magnitude.

The specific new technique is as follows: The six bit index is split into (i) a lower three bit quantity,
which is used to compute a magnitude of either zero or one for each of X,y and z, and (ii) an upper three
bit quantity, which is used to determine an octant for the resulting gradient (positive or negative sign in
each of x,y, and z).

(i) Magnitude computation, based on the three lower bits:

If bitlbito = 0, then let (p,q,r) = (x,y,z). Otherwise, let (p,q,r) be a rotation of the order of (x,y,z) to
(y,z,x) or (z,x,y), as bit | bito = 1 or 2, respectively, and set either q or r to zero as bit, = 0 or 1,
respectively. The resulting possible rotations are shown in the table below:

2-15

bit,bit bit, bit,bit bit,

000 P=xX =y r=z 100 pP=X =y r=z
001 pP=y =z r= 101 p=y g=0 r=
010 p=z g= = 110 p=z g=0 r=y
011 p=x g=y r=0 111 p=x g=0 r=z

(ii) Octant computation, based on the three upper bits:

Once p,q,r have been determined, invert the sign of p if bit s =bit 5, of q if bit=bit,, and of r if
bit ;=(bit , !=bit), then add together p,q, and r. The resulting possible gradient values are shown in the
table below:

bitsbit bit, bitsbit bit,
000 -p—g+r 100 p+g-r
001 p-g-r 101 -p+g+r
010 -p+g-r 110 p—g+r
011 p+g+r 111 -p—g-r

In this way, a gradient vector is defined using only a small number of bit operations and two additions. In
particular, the computation of gradient requires no multiply operations. This contrasts very favourably
with previous implementations of Noise, in which three multiply operations were required for each
gradient computation (one multiply in each of the three component dimensions).

The new reconstruction primitive:
Simplex grid:

Rather than placing each input point into a cubic grid, based on the integer parts of its (X,y,z) coordinate
values, the input point is placed onto a simplicial grid as follows:

1. Skew the input point (x,y,z) to:

define skew((x,y,z) —> (x',y',z"))
s = (x+y+z)/3
(x',y',z"'") = (xt+s,y+s,z+s)

This skew transformation linearly scales about the origin, along the x=y=z axis, bringing the point
(1,1,1) to the point (2,2,2).

2. Use the integer coordinates in the skewed space to determine a surrounding unit cube whose corner
vertex with lowest coordinate values is:

(i',3', k") = (floor(x'"),floor(y'),floor(z"'))
This corner point can be converted back to the original unskewed coordinate system via:

define unskew ((i',3j', k") —> (i,7,k))

s' = (i'+3'+k")/6
(lrjrk) = (i_S'rj_S'rk_S')

Also consider the original coordinates relative to the unskewed image of the cube corner:
(u,v,w) = (x-1i, y=-3, z-k)

3. Find the simplex containing the point. Relative to (i,j,k), the skewed image of relative point (u,v,w)
will lie in one of the six simplices:

PPN N
cooooo
~ S S S ~ S
cooooo
~ S S S ~ S
cooooo
ooz
oo OO
S S~ N~~~
PP OoOOoOoOo
NP
Rag N
P OR P OR
~ S S~ N o~ o~
PR P OoOR O
NP
S s s s o~ o~
~ o~~~ o~ —~
PR R R
NN
PR PR
NN
PR PR
e e — — —
- e e

O OR PR

(
(
(
(
(
(

~ o~~~ —~ —~
~ o~~~ —~ —~
OO OOk
N NS S S N~ O~
N NS S S N~ O~

N N N N N~

Each of these simplices can be defined as an ordered traversal A,B,C from vertex (0,0,0) to vertex
(1,1,1) of a unit cube in the skewed space, where { A,B,C } is some permutation of {
(1,0,0),(0,1,0),(0,0,1) }. For example, the last simplex above can be defined as an z,y,x traversal,
since its first transition A = (0,0,1), its second transition B = (0,1,0), and its third transition C =
(0,0,1).

Which simplex contains the input point is determined by the relative magnitudes of u, v and w. For
example, if w > v and v > u, then the first transition will be in the z dimension, so A = (0,0,1), and
the second transition will be in the y dimension, so B = (0,1,0). In this case, the point lies within the
simplex whose traversal order is z,y,x.

The four surrounding vertices of the simplex can now be defined as:
{ (i,3,k), (i,7,k)+unskew(d), (i, J,k)+unskew(A+B), (i, J,k)+unskew (A+B+C) }

Spherical kernel

If the input point is positioned (u,v,w) from a given simplex vertex, then the contribution from that vertex
to the final result will be given by:

t = 0.6 — (u2 + ve o+ w2)
if t > 0 then 8(t?%) else 0

Hardware integration:

The new method can be implemented as a set of pipelined hardware logic gates, in a way that would be
very straightforward to design using an FPGA, given the reference implementation below.

Any implementation needs to choose the number of bits of accuracy desired for both input and for
output. This choice of bit-depth will vary the number of hardware gates required, but does not in any
significant way modify the underlying technique.

In a pipelined implementation, it is very straightforward to maintain a high performance relative to the
number of hardware gates used in the implementation, by pipelining the input. This guarantees that the
circuitry which implements each different part of the method is always in active use.

The hardware circuitry that implements the new method can make use of an efficiently pipelined parallel
implementation, as follows:

1. A supervisory process or driver fills an array with a sequence of (x,y,z) tuples to be evaluated;
2. Noise is invoked by pipelining these input values into a section of logic circuitry that implements it;

3. The resulting sequence, of Noise derivative/value tuples (fx,fy,fz,f), is placed into an output array;
4. The supervisory driver reads out this array of results, and moves on to the next operation within the
algorithmic sequence of texture synthesis.

Generalization to higher dimensions:

It is straightforward to generalize this approach to higher dimensions. In n dimensions, a hypercube can
be decomposed into n! simplices, where each simplex corresponds to an ordering of the edge traversal of
the hypercube from its lower vertex (0,0,...0) to its upper vertex (1,1,...1). For example, when n=4, there
are 24 such traversal orderings. To determine which simplex surrounds the input point, one must sort the
coordinates in the difference vector (u,...u) from the lower vertex of the surrounding skewed hypercube

to the input point.

For a given n, the "skew factor" f should be set to f = (n+1)l/2, so that the point (1,1,...1) is transformed
to the point (ff,...f). In addition, the exact radius and amplitude of the hypersphere-shaped kernel
centered at each simplex vertex need to be tuned so as to produce the best visual results for each choice
of n.

Previous implementations of Noise, since they were defined on a cubic grid, required a successive
doubling of the number of grid points that need to be visited, for each increment in the number of
dimensions n. The computational complexity, in terms of vector operations, required to evaluate Noise in

n dimensions was therefore O(2"™). Since this is exponential in the number of dimensions, it is not
practical beyond a few dimensions.

In contrast, the new implementation , since it is defined on a simplicial grid, requires only an increment in
the number of grid points that need be visited, for each increment in the number of dimensions n. The
computationational complexity, in terms of vector operations, required to evaluate the new
implementation of Noise in n dimensions is therefore O(n). Since this is only polynomial in the number of
dimensions, it is practical even for higher dimensions.

To compute the computational complexity in terms of arithmetic operations, both of the above figures
need to be multiplied by O(n), since the length of each contributing vector operation, and therefore the
computational cost of each vector operation, is n, increasing linearly with the number of dimensions.

Therefore the computational complexity of previous Noise implementations in n dimensions is O(n 2"),
whereas the computational complexity of the new Noise implementation, in n dimensions is o(n?).

The important conclusion to be drawn from this analysis is that this new implementation of Noise, in
contrast to previous implementations, is practical in even high dimensional spaces, because it is a
computation of only polynomial complexity, not of exponential complexity. For example, the cost of

computing Noise in 10 dimensions using previous implementations is approximately O(10 * 210) =

0(10240), whereas the cost using the new implementation is approximately O(10 * 10) = O(100). In this
case, a computational advantage factor of 100 is demonstrated. A reference Java implementation of the
new Noise algorithm is given below, in Appendix B.

Appendix A

/* coherent noise function over 1, 2 or 3 dimensions */
/* (copyright Ken Perlin) */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define B 0x100
#define BM Oxff

#define N 0x1000

#define NP 12 /* 2°N */
#define NM Oxfff

static p[B + B
static float g3
static float g2
static float gl
static start =
static void init (void);

#define s_curve(t) (t * t * (3. — 2. * t))
#define lerp(t, a, b) (a + t * (b - a))

#define setup(i,b0,bl,r0,rl)\

t = vec[i] + N;\

b0 = ((int)t) & BM;\
bl = (b0+1) & BM;\
r0 = t - (int)t;\

rl = r0 - 1.;

double noisel (double argq)

{
int bx0, bxl;
float rx0, rxl, sx, t, u, v, vecl[l];

vec[0] = arg;

if (start) {
start = 0;
init () ;

}

setup (0, bx0,bxl, rx0,rxl);

sx = s_curve (rx0);
u=1rx0 * gl[pl[bx0 1 1;
v = rxl * gl[pl bxl 1 1;

return lerp(sx, u, Vv);

}

float noise2 (float vec[2])
{

2-19

int bx0,
float rxO0,
register i,

if

}

setup (0,
setup (1,

b00
bl0
b01
bll

bx1l, by0, byl, b0O0,
rxl, ry0, ryl, *q,

Ji

blo0,
sx,

b01,
SYr

bll;

a, b, t, u,

(start) {

SX =

Sy

#define

S|
q =
a

q
q
b

return lerp(sy,

}

=p
=p

at2 (rx,ry) (

g2[b00]
g2[blo] ;
= lerp(sx,

g2[b01] ; u =
g2[bll] ; v =
= lerp(sx, ;

s_curve (rx0) ;
s_curve (ry0)

start =
init ();

0;

bx0, bx1,
by0,byl,

rx0, rx1);
ry0,ryl);

[bx0];
[bx1l 1;

by0
by0
byl
byl

kelie il elie!
U U b
+ + + +

14
14

rx * q[0] + ry * gq[l])

;U
v =

at2 (rx0,ry0);
at2 (rx1l,ry0);
u,

at2 (rx0,ryl);
at2(rxl,ryl);
u,

float noise3 (float vec[3])

{

int bxO0,
float rx0,
register i,

if

}

setup (0,
setup (1,
setup (2,

b00
bl0
b01
bll

t

Sy
Sz

#define at3(rx,ry,rz) (

le, bool

rzl, *q,

b1lo0,
SYr

b01,
sz,

by0, byl, bz0, bzl,
rxl, ry0, ryl, rzoO,
Ji

(start) {

P

=p

start =
init ();

0;

bx0, bx1,
by0,byl,
bz0,bzl,

rx0, rxl)
ry0,ryl)
rz0,rzl);

14
14

[bx0];
[bx1l 1;

by0
by0
byl
byl

kelielielle
SR R
+ + + +

s_curve (rx0) ;
s_curve (ry0);
s_curve (rz0);
rx * g[0]

+ ry * gll] + rz * gl[2]

\4

bll;

a,

)

b,

Cy

g = g3[b00 + bz0] ; u = at3(rx0,ry0,rz0);
g = g3[bl0 + bz0] ; v = at3(rxl,ry0,rz0);
a = lerp(t, u, v);

g = g3[b0l + bz0] ; u = at3(rx0,ryl,rz0);
g = g3[bll + bz0] ; v = at3(rxl,ryl,rz0);
b = lerp(t, u, v);

c = lerp(sy, a, b);

g = g3[b00 + bzl] ; u = at3(rx0,ry0,rzl);
g = g3[bl0 + bzl] ; v = at3(rxl,ry0,rzl);
a = lerp(t, u, v);

g = g3[b0l + bzl] ; u = at3(rx0,ryl,rzl);
g = g3[bll + bzl] ; v = at3(rxl,ryl,rzl);
b = lerp(t, u, v);

d = lerp(sy, a, b);

return lerp(sz, c, d);

}

static void normalize2 (float v[2])

{

float s;
s = sqrt(v[0] * vI[0] + v[1] * v[1l]);
v[0] = v[0] / s;
v[il] = v[1l] / s
}
static void normalize3 (float vI[3])
{
float s;
s = sqgrt(v[0] * v[0] + v[1] * v[1] + vI[2] * vI[2]);
v[0] = v[0] / s;
vi[l] v[1l] / s;
vi[2] v[2] / s;
}
static void init (void)
{
int i, 3, k;
for (1 =0 ; i < B ; i++) {
plil = 1i;
gl[i] = (float) ((random() % (B + B)) - B) / B;
for (jJ =0 ; J < 2 ; j++)
g2[i][j] = (float) ((random() % (B + B)) - B) / B;
normalize2 (g2[i]);
for (jJ =0 ; 3 < 3 ; j++)
g3[i]l[j] = (float) ((random() % (B + B)) - B) / B;
normalize3(g3[i]);

while (——-1i) {
k = plil;
pli] = pl[j = random() % B];
plJl = k;

for (1 =0 ; 1 < B + 2 ; i++) {
p[B + i] = pl[i];
gl[B + i] = glf[i];
for (3 =0 ; 3 < 2 ; j++)
g2[B + 1i][3] = g2[1]1[31;
for (3 =0 ; 3 < 3 ; Jj++)
g3[B + 1i][3] = g3[1]1[31;

Appendix B:

A complete implementation of a function returning a value that conforms to the new method is given

below as a Java class definition:

public final class Noise3 {
static int i, 3j,k, A[] = {0,0,0};
static double u,v,w;
static double noise(double x, double y, double z) {

double s = (x+y+z)/3;

i=(int)Math.floor (x+s); Jj=(int)Math.floor (y+s); k=(int)Math.f
s = (i+j+k)/6.; u = x—-i+s; v = y—-j+s; w = z-k+s;
A[0]=A[1]=A[2]=0;

int hi = u>=w 2?2 u>=v 2 0 : 1 : v>=w 2?2 1 : 2;

int lo=u<w?2u<v?<20:1:v<w&?2?1: 2;

return K(hi) + K(3-hi-lo) + K(lo) + K(0);
}
static double K(int a) {

double s = (A[0]+A[1]+A[2])/6.;

double x = u-A[0]+s, yv = v-A[l]l+s, z = w-A[2]+s, t = .6-x*x-y
int h = shuffle(i+A[0], J+A[1],k+A[2]);

Alal++;

if (£t < 0)

return 0;
int b5 = h>>5 & 1, b4 = h>>4 & 1, b3 = h>>3 & 1, b2= h>>2 & 1
double p = b==17?x:b==2?y:z, g = b==1?y:b==27z:x, r = b==17z:b
p = (b5==b3 ? -p : p); g= (b5==b4 ? -g : gq); r = (b5!'=(b4d"b3
t *= t;
return 8 * t * t * (p + (b==0 ? gtr : b2==0 2?2 g : r));
}
static int shuffle(int i, int Jj, int k) {
return b (i, j,k,0) + b(j,k,i,1) + b(k,i,3,2) + b(i, 3, k,3) +
b(j,k,1i,4) + b(k,1,3,5) + b(i,J,k,6) + b(3j,k,1,7) ;
}
static int b(int i, int j, int k, int B) { return T[b(i,B)<<2 |
static int b(int N, int B) { return N>>B & 1; }
static int T[] = {0x15,0x38,0x32,0x2c,0x0d,0x13,0x07,0x2a};

loor (z+s);

*y-z*z;

, b =h & 3;

==27X:Y;

) ? -r : r);

b(j,B)<<1

b(k,B

References:

[EBERTO98] Texturing and Modeling; A Procedural Approach, Second Edition; Ebert D. et al, AP

Professional; Cambridge 1998c;

[FOLEY96] Computer Graphics: Principles and Practice, C version,
ADDISON-WESLEYD 1996,

Foley 1.,

et al,

[INTEL96], Using MMX[tm] Instructions for Prtcedural Texture Mapping Intel Developer Relations
Group, Version 1.0, November 18, 1996, http://developer.intel.com/drg/mmx/appnotes/proctex.htm

[NVIDIAOO] TechnicalDemos - Perlin Noise http://www.nvidia.com/Support/Developer
Relations/Technical Demos, Disclosed 11/10/2000.

[PERLINS89] Perlin, K., and Hoffert, E., Hypertexture, 1989 Computer Graphics (proceedings of ACM
SIGGRAPH Conference); Vol. 23 No. 3.

[PERLINSS] Perlin, K., An Image Synthesizer, Computer Graphics; Vol. 19 No. 3.

Chapter 3

Hardware Shading Effects
Wolfgang Heidrich

Real-time Shading:
Hardware Shading Effects

Wolfgang Heidrich
The University of British Columbia

Abstract

In this part of the course we will review some examples
of shading algorithms that we might want to implement
in a real-time or interactive system. This will help us
to identify common approaches for real-time shading
systems and to acquire information about feature sets
required for this kind of system.

The shading algorithms we will look at fall into three
categories: realistic materials for local and global illu-
mination, shadow mapping, and finally bump mapping
algorithms.

1 Realistic Materials

In this section we describe techniques for a variety of
different reflection models to the computation of local
illumination in hardware-based rendering. Rather than
replacing the standard Phong model by another single,
fixed model, we seek a method that allows us to uti-
lize a wide variety of different models so that the most
appropriate model can be chosen for each application.

1.1 Arbitrary BRDFs for Local lllumina-
tion

We will first consider the case of local illumination,
i.e. light that arrives at objects directly from the light
sources. The more complicated case of indirect illu-
mination (i.e. light that bounces around in the envi-
ronment before hitting the object) will be described in
Section 1.3.

The fundamental approach for rendering arbitrary
materials works as follows. A reflection model in re-
flection model in computer graphics is typically given
in the form of a bidirectional reflectance distribution
function (BRDF), which describes the amount of light
reflected for each pair of incoming (i.e. light) and out-
going (i.e. viewing) direction. This function can either

be represented analytically, in which case it is called a
reflection model), or it can be represented in a tabular or
sampled form as a four-dimensional array (two dimen-
sions each for the incoming and outgoing direction).
The problem with both representations is that they
cannot directly be used in hardware rendering: the
interesting analytical models are mathematically too
complex for hardware implementations, and the tabular
form consumes too much memory (a four-dimensional
table can easily consume dozens of MB). A differ-
ent approach has been proposed by Heidrich and Sei-
del [9]. It turns out that most lighting models in com-
puter graphics can be factored into independent com-
ponents that only depend on one or two angles. These
can then be independently sampled and stored as lower-
dimensional tables that consume much less memory.
Kautz and McCool [12] described a method for factor-
izing BRDFs given in tabular form into lower dimen-
sional parts that can be rendered in a similar fashion.
As an example for the treatment of analytical models,
consider the one by Torrance and Sparrow [29]:

- F-G-D

Sl =) = e))

mecosa-cosf’
where f, is the BRDF, « is the angle between the sur-
face normal 7 and the vector pointing towards the light
source, while f is the angle between 7 and the viewing
direction ¥. The geometry is depicted in Figure 1.

For a fixed index of refraction, the Fresnel term F
in Equation 1 only depends on the angle 8 between the
light direction ["and the micro facet normal %, which is
the halfway vector between [and 7. Thus, the Fresnel
term can be seen as a univariate function F'(cos 6).

The micro facet distribution function D, which de-
fines the percentage of facets oriented in direction k,
depends on the angle § between h and the surface nor-
mal 7, as well as a roughness parameter. This is true
for all widely used choices of distribution functions, in-
cluding a Gaussian distribution of § or of the surface

=1

A

(en)

7

Figure 1: The local geometry of reflection at a rough
surface.

height, as well as the distribution by Beckmann [3].
Since the roughness is generally assumed to be constant
for a given surface, this is again a univariate function
D(cos §).

Finally, when using the geometry term G proposed
by Smith [27], which describes the shadowing and
masking of light for surfaces with a Gaussian mi-
cro facet distribution, this term is a bivariate function
G(cos a, cos).

The contribution of a single point- or directional light
source with intensity I; to the intensity of the surface is
given as I, = fr(f—> ¥) cos « - I;. The term fr(x,f—>
¥) cos a can be split into two bivariate parts F'(cos) -
D(cos) and G(cos e, cos B)/(m - cos), which are
then stored in two independent 2-dimensional lookup
tables.

Regular 2D texture mapping can be used to imple-
ment the lookup process. If all vectors are normalized,
the texture coordinates are simple dot products between
the surface normal, the viewing and light directions,
and the micro facet normal. These vectors and their
dot products can be computed in software and assigned
as texture coordinates to each vertex of the object.

The interpolation of these texture coordinates across
a polygon corresponds to a linear interpolation of the
vectors without renormalization. Since the reflection
model itself is highly nonlinear, this is much better than
simple Gouraud shading, but not as good as evaluating
the illumination in every pixel (Phong shading). The in-
terpolation of normals without renormalization is com-
monly known as fast Phong shading.

This method for looking up the illumination in two
separate 2-dimensional textures requires either a single

rendering pass with two simultaneous textures, or two
separate rendering passes with one texture each in or-
der to render specular reflections on an object. If two
passes are used, their results are multiplied using alpha
blending. A third rendering pass with hardware lighting
(or a third simultaneous texture) is applied for adding a
diffuse term.

If the light and viewing directions are assumed to
be constant, that is, if a directional light and an or-
thographic camera are assumed, the computation of the
texture coordinates can even be done in hardware. To
this end, light and viewing direction as well as the
halfway vector between them are used as row vectors
in the texture matrix for the two textures:

0 0 0 cosf Mg cos 8
hy hy h, 0 Ny cos d 2)
0 0 O 0 N, 0
0 0 0 1 1 1
lgy Iy 1, O g Cos &
vy vy v, 0 ny | | cosp
0 0 0 O n, | 0 3)
0 0 0 1 1 1

Figure 2 shows a torus rendered with two different
roughness settings using this technique.

We would like to note that the use of textures for rep-
resenting the lighting model introduces an approxima-
tion error: while the term F'- D is bounded by the inter-
val [0, 1], the second term G/ (w-cos 3) exhibits a singu-
larity for grazing viewing directions (cos 5 — 0). Since
graphics hardware typically uses a fixed-point represen-
tation of textures, the texture values are clamped to the
range [0, 1]. When these clamped values are used for
the illumination process, areas around the grazing an-
gles can be rendered too dark, especially if the surface
is very shiny. This artifact can be reduced by dividing
the values stored in the texture by a constant which is
later multiplied back onto the final result. In practice,
however, these artifacts are hardly noticeable.

The same methods can be applied to all kinds of
variations of the Torrance-Sparrow model, using differ-
ent distribution functions and geometry terms, or the
approximations proposed in [24]. With varying num-
bers of terms and rendering passes, it is also possible
to come up with similar factorizations for all kinds of
other models. For example the Phong, Blinn-Phong

X=X~
- X=X~

Figure 2: A torus rendered with the proposed hardware multi-pass method using the Torrance-Sparrow reflection
model (Gaussian height distribution and geometry term by [27]) and different settings for the surface roughness. For
these images, the torus was tessellated into 200 x 200 polygons.

and Cosine Lobe models can all be rendered in a sin-
gle pass with a single texture, which can even already
account for an ambient and a diffuse term in addition to
the specular one.

1.1.1 Anisotropy

Although the treatment of anisotropic materials is
somewhat harder, similar factorization techniques can
be applied here. For anisotropic models, the micro
facet distribution function and the geometrical attenu-
ation factor also depend on the angle ¢ between the
facet normal and a reference direction in the tangent
plane. This reference direction is given in the form of a
tangent vector .

For example, the elliptical Gaussian model [31] in-
troduces an anisotropic facet distribution function spec-
ified as the product of two independent Gaussian func-
tions, one in the direction of t_: and one in the direction
of the binormal 7 x £. This makes D a bivariate function
in the angles ¢ and ¢. Consequently, the texture coor-

dinates can be computed in software in much the same
way as described above for isotropic materials. This
also holds for the other anisotropic models in computer
graphics literature.

Since anisotropic models depend on both a normal
and a tangent per vertex, the texture coordinates cannot
be generated with the help of a texture matrix, even if
light and viewing directions are assumed to be constant.
This is due to the fact that the anisotropic term can usu-
ally not be factored into a term that only depends on
the surface normal, and one that only depends on the
tangent.

One exception to this rule is the model by Banks [2],
which is mentioned here despite the fact that it is an
ad-hoc model which is not based on physical consider-
ations. Banks defines the reflection off an anisotropic
surface as

I, = cosa - (ka(n![l) + ks(n!|R)'/7) - I;, (@)

where n is the projection of the light vector ['into the

plane perpendicular to the tangent vector ¢. This vec-
tor is then used as a shading normal for a Blinn-Phong
lighting model with diffuse and specular coefficients kg
and kg, and surface roughness r. In [28], it has been
pointed out that this Phong term is really only a func-
tion of the two angles between the tangent and the light
direction, as well as the tangent and the viewing direc-
tion. This fact was used for the illumination of lines
in [28].

Applied to anisotropic reflection models, this means
that this Phong term can be looked up from a 2-
dimensional texture, if the tangent £ is specified as a
texture coordinate, and the texture matrix is set up as in
Equation 3. The additional term cos « in Equation 4 is
computed by hardware lighting with a directional light
source and a purely diffuse material, so that the Banks
model can be rendered with one texture and one pass
per light source. Figure 3 shows images rendered with
this reflection model.

Figure 3: Disk and sphere illuminated with isotropic

reflection (left), anisotropic reflection with circular fea-
tures (center), and radial features (right).

1.1.2 Measured or Simulated Data

As mentioned above, the idea of factorizing BRDFs
into low-dimensional parts that can be sampled and
stored as textures not only applies to analytical reflec-
tion models, but also to BRDFs given in a tabular form.
Different numerical methods have been presented for
factorizing these tabular BRDFs [12, 18]. The discu-
sion of these is beyond the scope of this course, how-
ever.

The advantage of the analytical factorization is that
it is very efficient to adjust parameters of the reflection

model, so this can be done interactively. The numeri-
cal methods take too long for that. On the other hand,
the big advantage of the numerical methods is that arbi-
trary BRDFs resulting from measurements or physical
simulations can be used. Figure 4, for example, shows
a teapot with a BRDF that looks blue from one side and
red from another. This BRDF has been generated using
a simulation of micrgeometry [8].

Figure 4: A teapot with a simulated BRDF.

1.2 Global lllumination using Environ-
ment Maps

The presented techniques for applying alternative re-
flection models to local illumination computations can
significantly increase the realism of synthetic images.
However, true photorealism is only possible if global
effects are also considered. Since texture mapping tech-
niques for diffuse illumination are widely known and
applied, we concentrate on non-diffuse global illumi-
nation, in particular mirror- and glossy reflection.

We describe here an approach based on environment
maps, as presented by Heidrich and Seidel [9], be-
cause they offer a good compromise between render-
ing quality and storage requirements. With environ-
ment maps, 2-dimensional textures instead of the full
4-dimensional radiance field [19] can be used to store
the illumination.

1.3 View-independent Environment Maps

The techniques described in the following assume that
environment maps can be reused for different viewing
positions in different frames, once they have been gen-
erated. It is therefore necessary to choose a representa-
tion for environment maps which is valid for arbitrary
viewing positions. This includes both cube maps [6]

and parabolic maps [9], both of which are supported on
all modern platforms.

1.4 Mirror and Diffuse Terms with Envi-
ronment Maps

Once an environment map is given in a view-
independent parameterization, it can be used to add a
mirror reflection term to an object. Using multi-pass
rendering and either alpha blending or an accumulation
buffer [7], it is possible to add a diffuse global illumi-
nation term through the use of a precomputed texture.
Two methods exist for the generation of such a texture.
One way is, that a global illumination algorithm such
as Radiosity is used to compute the diffuse global illu-
mination in every surface point.

The second approach is purely image-based, and was
proposed by Greene [6]. The environment map used for
the mirror term contains information about the incom-
ing radiance L;(x, f), where x is the point for which the
environment map is valid, and ['the direction of the in-
coming light. This information can be used to prefilter
the environment map to represent the diffuse reflection
of an object for all possible surface normals. Like regu-
lar environment maps, this texture is only valid for one
point in space, but can be used as an approximation for
nearby points.

1.5 Fresnel Term

A regular environment map without prefiltering de-
scribes the incoming illumination in a point in space.
If this information is directly used as the outgoing il-
lumination, as with regular environment mapping, only
metallic surfaces can be modeled. This is because for
metallic surfaces (surfaces with a high index of refrac-
tion) the Fresnel term is almost one, independent of the
angle between light direction and surface normal. Thus,
for a perfectly smooth (i.e. mirroring) surface, incom-
ing light is reflected in the mirror direction with a con-
stant reflectance.

For non-metallic materials (materials with a small in-
dex of refraction), however, the reflectance strongly de-
pends on the angle of the incoming light. Mirror re-
flections on these materials should be weighted by the
Fresnel term for the angle between the normal and the
viewing direction .

Similar to the techniques for local illumination pre-
sented in Section 1, the Fresnel term F'(cos6) for the

mirror direction 7%, can be stored in a texture map. Since
here only the Fresnel term is required, a 1-dimensional
texture map suffices for this purpose. This Fresnel term
is rendered to the framebuffer’s alpha channel in a sep-
arate rendering pass. The mirror part is then multiplied
with this term in a second pass, and a third pass is used
to add the diffuse part. This yields an outgoing radiance
of L, = F - L,, + Ly, where L,, is the contribution of
the mirror term, while L is the contribution due to dif-
fuse reflections.

In addition to simply adding the diffuse part to the
Fresnel-weighted mirror reflection, we can also use the
Fresnel term for blending between diffuse and specular:
L,=F L, + (1 — F)L,. This allows us to simulate
diffuse surfaces with a transparent coating: the mirror
term describes the reflection off the coating. Only light
not reflected by the coating hits the underlying surface
and is there reflected diffusely.

Figure 5 shows images generated using these two ap-
proaches. In the top row, the diffuse term is simply
added to the Fresnel-weighted mirror term (the glossy
reflection is zero). For a refractive index of 1.5 (left),
which approximately corresponds to glass, the object
is only specular for grazing viewing angles, while for
a high index of refraction (200, right image), which is
typical for metals, the whole object is highly specular.

The bottom row of Figure 5 shows two images gen-
erated with the second approach. For a low index of
refraction, the specular term is again high only for graz-
ing angles, but in contrast to the image above, the dif-
fuse part fades out for these angles. For a high index
of refraction, which, as pointed out above, corresponds
to metal, the diffuse part is practically zero everywhere,
so that the object is a perfect mirror for all directions.

1.6 Precomputed Glossy Reflection and
Transmission

We would now like to extend the concept of environ-
ment maps to glossy reflections. The idea is similar
to the diffuse prefiltering proposed by Greene [6] and
the approach by Voorhies and Foran [30] to use envi-
ronment maps to generate Phong highlights from di-
rectional light sources. These two ideas can be com-
bined to precompute an environment map containing
the glossy reflection of an object with a Phong material.
With this concept, effects similar to the ones presented
by Debevec [5] are possible in real time.

Figure 5: Top row: Fresnel weighted mirror term. Second row: Fresnel weighted mirror term plus diffuse illumina-
tion. Third row: Fresnel blending between mirror and diffuse term. The indices of refraction are (from left to right)
1.5, 5, and 200. Bottom row: a prefiltered version of the map with a roughness of 0.01, and application of this map
to a reflective sphere and torus.

As shown in [15], the Phong BRDF is given by

o —»—»1/1-
fr(lﬁg):ks.mzks.
COS ¢

(737
COS ¢«

®)

where 7}, and 7, are the reflected light- and viewing
directions, respectively.

Thus, the specular global illumination using the
Phong model is

which is only a function of the reflection vector 7, and
the environment map containing the incoming radiance
Lz(f) Therefore, it is possible to take a map containing
Li(f), and generate a filtered map containing the outgo-
ing radiance for a glossy Phong material. Since this fil-
tering is relatively expensive, it can on most platforms
not be redone for every frame in an interactive applica-
tion. On special graphics hardware that supports con-
volution operations, however, it can be performed on
the fly, as described by Kautz et al. [13].

The bottom row of Figure 5 shows such a prefiltered
map as well as applications of this map for reflection
and transmision. If the original environment map is
given in a high-dynamic range format, then this pre-
filtering technique allows for effects similar to the ones
described by Debevec [5].

- - -

()7 Li(1) dw(@), (6)

2 Shadow Mapping

After discussing models for local illumination in the
previous chapter, we now turn to global effects. In this
chapter we deal with algorithms for generating shadows
in hardware-based renderings.

Shadows are probably the visually most important
global effect. This fact has resulted in a lot of re-
search on how to generate them in hardware-based
systems. Thus, interactive shadows are in principle
a solved problem. However, current graphics hard-
ware rarely directly supports shadows, and, as a con-
sequence, fewer applications than one might expect ac-
tually use the developed methods.

In contrast to the analytic approach shadow volumes,
shadow maps [33] are a sampling-based method. First,
the scene is rendered from the position of the light
source, using a virtual image plane (see Figure 6). The
depth image stored in the z-buffer is then used to test
whether a point is in shadow or not.

point
light source

virtual
image plane
with

depth image

occluder

=]~

receiver

Figure 6: Shadow maps use the z-buffer of an image of
the scene rendered from the light source.

To this end, each fragment as seen from the cam-
era needs to be projected onto the depth image of the
light source. If the distance of the fragment to the light
source is equal to the depth stored for the respective
pixel, then the fragment is lit. If the fragment is further
away, is is in shadow.

A hardware multi-pass implementation of this prin-
ciple has been proposed in [25]. The first step is the
acquisition of the shadow map by rendering the scene
from the light source position. For walkthroughs, this is
a preprocessing step, for dynamic scenes it needs to be
performed each frame. Then, for each frame, the scene
is rendered without the illumination contribution from
the light source. In a second rendering pass, the shadow
map is specified as a projective texture, and a specific
hardware extension is used to map each pixel into the
local coordinate space of the light source and perform
the depth comparison. Pixels passing this depth test are
marked in the stencil buffer. Finally, the illumination
contribution of the light source is added to the lit re-
gions by a third rendering pass.

The advantage of the shadow map algorithm is that
it is a general method for computing all shadows in the
scene, and that it is very fast, since the representation
of the shadows is independent of the scene complex-
ity. On the down side, there are artifacts due to the dis-
crete sampling and the quantization of the depth. One
benefit of the shadow map algorithm is that the ren-
dering quality scales with the available hardware. The
method could be implemented on fairly low end sys-
tems, but for high end systems a higher resolution or
deeper z-buffer could be chosen, so that the quality in-

creases with the available texture memory. Unfortu-
nately, the necessary hardware extensions to perform
the depth comparison on a per-fragment basis are cur-
rently only availablehave until recently only been avail-
able on two high-end systems, the RealityEngine [1]
and the InfiniteReality [20].

2.1 Shadow Maps Using the Alpha Test

Instead of relying on a dedicated shadow map exten-
sion, it is also possible to use projective textures and
the alpha test. Basically, this method is similar to the
method described in [25], but it efficiently takes advan-
tage of automatic texture coordinate generation and the
alpha test to generate shadow masks on a per-pixel ba-
sis. This method takes one rendering pass more than
required with the appropriate hardware extension.

In contrast to traditional shadow maps, which use the
contents of a z-buffer for the depth comparison, we use
a depth map with a linear mapping of the z values in
light source coordinates. This allows us to compute
the depth values via automatic texture coordinate gen-
eration instead of a per-pixel division. Moreover, this
choice improves the quality of the depth comparison,
because the depth range is sampled uniformly, while a
z-buffer represents close points with higher accuracy
than far points.

As before, the entire scene is rendered from the light
source position in a first pass. Automatic texture coor-
dinate generation is used to set the texture coordinate of
each vertex to the depth as seen from the light source,
and a 1-dimensional texture is used to define a linear
mapping of this depth to alpha values. Since the al-
pha values are restricted to the range [0 ... 1], near and
far planes have to be selected, whose depths are then
mapped to alpha values 0 and 1, respectively. The re-
sult of this is an image in which the red, green, and
blue channels have arbitrary values, but the alpha chan-
nel stores the depth information of the scene as seen
from the light source. This image can later be used as a
texture.

For all object points visible from the camera, the
shadow map algorithm now requires a comparison of
the point’s depth with respect to the light source with
the corresponding depth value from the shadow map.
The first of these two values can be obtained by apply-
ing the same 1-dimensional texture that was used for
generating the shadow map. The second value is ob-
tained simply by using the shadow map as a projective

texture. In order to compare the two values, we can
subtract them from each other, and compare the result
to zero.

With multi-texturing, this comparison can be im-
plemented in a single rendering pass. Both the 1-
dimensional texture and the shadow map are specified
as simultaneous textures, and the texture blending func-
tion is used to implement the difference. The result-
ing « value is 0 at each fragment that is lit by the light
source, and > 0 for fragments that are shadowed. Then,
an alpha test is employed to compare the results to zero.
Pixels passing the alpha test are marked in the stencil
buffer, so that the lit regions can then be rendered in a
final rendering pass.

Without support for multi-texturing, the same algo-
rithm is much more expensive. First, two separate
passes are required for applying the texture maps, and
alpha blending is used for the difference. Now, the
framebuffer contains an « value of 0 at each pixel that
is lit by the light source, and > 0 for shadowed pixels.
In the next step it is then necessary to set o to 1 for
all the shadowed pixels. This will allow us to render
the lit geometry, and simply multiply each fragment by
1 — a of the corresponding pixel in the framebuffer (the
value of 1 — a would be 0 for shadowed and 1 for lit
regions). In order to do this, we have to copy the frame-
buffer onto itself, thereby scaling a by 2", where n is
the number of bits in the o channel. This ensures that
1/2™, the smallest value > 0, will be mapped to 1. Due
to the automatic clamping to the interval [0... 1], all
larger values will also be mapped to 1, while zero val-
ues remain zero. In addition to requiring an expensive
framebuffer copy, this algorithm also needs an alpha
channel in the framebuffer (“destination alpha”), which
might not be available on some systems.

Figure 7 shows an engine block where the shadow re-
gions have been determined using this approach. Since
the scene is rendered at least three times for every frame
(four times if the light source or any of the objects
move), the rendering times for this method strongly de-
pend on the complexity of the visible geometry in every
frame, but not at all on the complexity of the geometry
casting the shadows. Scenes of moderate complexity
can be rendered at high frame rates even on low end
systems. The images in Figure 7 are actually the results
of texture-based volume rendering using 3D texturing
hardware (see [32] for the details of the illumination
process).

Figure 7: An engine block generated from a volume
data set with and without shadows. The shadows have
been computed with our algorithm for alpha-coded
shadow maps. The Phong reflection model is used for
the unshadowed parts.

3 Bump Mapping Algorithms

Bump maps have become a popular approach for
adding visual complexity to a scene, without increas-
ing the geometric complexity. They have been used
in software rendering systems for quite a while [4],
but hardware implementations have only occurred rela-
tively recently, and several different methods are pos-
sible, depending on the level of hardware support
(e.g. [23, 22,9, 14]).

The original approach to bump mapping [4] defines
surface detail as a height value at every point on a
smooth base surface. From this texture-mapped height
value, one can compute a per-pixel normal by taking
the partial derivatives of the height values. Since this
is a fairly expensive operation, most recent hardware
implementations [22, 9, 14] precompute the normal for
every surface point in an offline process, and store it
directly in a texture map.

The bump mapping scheme that has become most
popular for interactive applications recently is de-
scribed in detail in a technical report by Kilgard [14].
First, the light and the viewing vector at every vertex
of the geometry is computed and transformed into the
local coordinate frame at that vertex (“tangent space”,
see [22]). In the original version, this is a software step,
which can now, however also be done directly in hard-
ware [16]. Then, these local vectors are interpolated
across the surface using Gouraud shading and the per-
pixel bump map normals are looked up from a texture

map. A simple reflection model containing a diffuse
and a Phong component can then be implemented as a
number of dot products followed by successive squar-
ing (for the Phong exponent). These operations map
easily to the register combiner facility present in mod-
ern hardware [21].

3.1 Shadows for Bump Maps

The basic approach to bump mapping as outlined above
can be extended to approximate the shadows that the
bumps cast onto each other. Note that approaches like
shadow maps do not work for bump maps because dur-
ing the rendering phase the geometry is not available;
only per-pixel normals are. Shadowing algorithms for
bump maps therefore encode the visibility of every sur-
face point for every possible light direction. This is
simplified by the fact that bump maps are derived from
height fields (i.e. terrains), which allows us to use the
notion of a horizon. In a terrain, a distant light source
located in a certain direction is visible from a given sur-
face point if and only if it is located above the horizon
for that surface point. Thus, it is sufficient to encode the
horizon for all height field points and directions. This
approach is called horizon mapping, first presented by
Max [17].

The question is, how this horizon information can be
represented such that it consumes little memory, and
such that the test of whether a given light direction is
above or below the horizon for any point in the bump
map can be done efficiently in hardware. We describe
here a method proposed by Heidrich et al. [8].

We start with a bump map given as a height field,
as in the original formulation by Blinn [4]. We then
select a number of random directions D = {d;}, and
shoot rays from all height field points p into each of the
directions d;. For the shadowing algorithm we will only
record a boolean value for each of these rays, namely
whether the ray hits another point in the height field, or
not. In Section 3.2 we will describe how to use a similar
preprocessing step for computing indirect illumination
in bump maps.

Now let us consider all the rays shot from a single
surface point p. We project all the unit vectors for
the sampling directions J; € D into the tangent plane,
i.e. we drop the z coordinate of J; in the local coordi-
nate frame. Then we fit an ellipse containing as many
of those 2D points that correspond to unshadowed di-
rections as possible, without containing too many shad-

owed directions. This ellipse is uniquely determined by
its (2D) center point ¢, a direction (a, ay)T describing
the direction of the major axis (the minor axis is then
simply (—ay, a;)"), and two radii 71 and ry, one for
the extent along each axis.

Figure 8: For the shadow test we precompute 2D el-
lipses at each point of the height field, by fitting them
to the projections of the scattering directions into the
tangent plane.

For the fitting process, we begin with the ellipse rep-
resented by the eigenvectors of the covariance matrix
of all points corresponding to unshadowed directions.
We then optimize the radii with a local optimization
method. As an optimization criterion we try to max-
imize the number of light directions inside the ellipse
while at the same time minimizing the number of shad-
owed directions inside it.

Once we have computed this ellipse for each grid
point in the height field, the shadow test is simple. The
light direction [is also projected into the tangent plane,
and it is checked whether the resulting 2D point is in-
side the ellipse (corresponding to a lit point) or not (cor-
responding to a shadowed point).

Both the projection and the in-ellipse test can math-
ematically be expressed very easily. First, the 2D coor-
dinates I, and [, have to be transformed into the coor-
dinate system defined by the axes of the ellipse:

)Gy o
() (s=s) e

Afterwards, the test

N
2
|

1-— >0 (©)]

has to be performed.
To map these computations to graphics hardware, we
represent the six degrees of freedom for the ellipses as

2 RGB textures. Then the required operations to im-
plement Equations 7 through 9 are simple dot products
as well as additions and multiplications. This is possi-
ble using the OpenGL imaging subset [26], available on
most contemporary workstations, but also using some
vendor specific extensions, such as the register com-
biner extension from NVIDIA [21]. Depending on the
exact graphics hardware available, the implementation
details will have to vary slightly. These details for dif-
ferent platforms are described in a technical report [11].

Figure 9 shows some results of this shadowing algo-
rithm.

Figure 9: A simple bump map with and without shad-
ows

3.2 Indirect lllumination in Bump Maps

Finally, we would like to discuss a method for com-
puting the indirect light in bump maps [8], i.e. the light
that bounces around multiple times in the bumps before
hitting the camera.

As in the case of bump map shadows, we start by
choosing a set of random directions d; € D, and shoot-
ing rays from al points p on the height field into all
directions d;. This time, however, we do not only store
a boolean value for every ray, but rather the 2D coordi-
nates of the intersection of that ray with the height field
(if any). That is, for every direction d;, we store a 2D
map S; that, for every point p, holds the 2D coordinates
of the point q visible from p in direction d;.

Using this precomputed visiblity information, we
can then integrate over the light arriving from all di-
rections. For every point p in the height field, we sum
up the indirect illumination arriving from any of the di-
rections d;, as depicted in Figure 10.

If we assume that both the light and the viewing di-
rection vary slowly across the height field (this corre-
sponds to the assumption that the bumps are relatively
small compared to the distance from both the viewer
and the light source), then the only strongly varying pa-

3-10

/ / Lz

7&/

Figure 10: With the precomputed visibility, the differ-
ent paths for the illumination in all surface points are
composed of pieces with identical directions.

rameters are the surface normals. More specifically, for
the radiance leaving a grid point p in direction ¥/, the
important varying parameters are the normal 7i,, the
point q := S;[p] visible from p in direction d;, and
the normal 77, in that point.

In particular, the radiance in direction ¥’ caused by
light arriving from direction ["and scattered once in di-
rection —J; is given by the following formula.

P
(£ T =) |1} - Li(@, 1)) - (10)

Usually, the BRDF is written as a 4D function of the in-
coming and the outgoing direction, both given relative
to a local coordinate frame where the local surface nor-
mal coincides with the z-axis. In a height field setting,
however, the viewing and light directions are given in
some global coordinate system that is not aligned with
the local coordinate frame, so that it is first necessary
to perform a transformation between the two frames.
To emphasize this fact, we have denoted the BRDF as a
function of the incoming and outgoing direction as well
as the surface normal. If we plan to use an anisotropic
BRDF on the micro geometry level, we would also have
to include a reference tangent vector.

Note that the term in parenthesis is simply the di-
rect illumination of a height field with viewing direc-
tion —J;, with light arriving from [If we precompute
this term for all grid points in the height field, we ob-
tain a texture Ly containing the direct illumination for
each surface point. This texture can be generated us-
ing a bump mapping step where an orthographic cam-
era points down onto the height field, but —J; is used
as the viewing direction for shading purposes.

Once we have L, the second reflection is just an-
other bump mapping step with ¥ as the viewing direc-
tion and d; as the light direction. This time, the incom-
ing radiance is not determined by the intensity of the
light source, but rather by the content of the L4 texture.

For each surface point p we look up the corresponding
visible point q = S;[p]. The outgoing radiance at q,
which is stored in the texture as Lg4[q], is at the same
time the incoming radiance at p.

Thus, we have reduced computing the once-scattered
light in each point of the height field to two succes-
sive bump mapping operations, where the second one
requires an additional indirection to look up the illumi-
nation. We can easily extend this technique to longer
paths, and also add in the direct term at each scattering
point. This is illustrated in the Figure 11.

Direct Illum. Indirect Illum.

T, T)-T,
Direct Illum. l Indirect Illum.
> F———— + — > >
[,-d, dy,—d;
Direct Illum. l Indirect Illum.
> F———» + > >
[,-d; d,,v
.
.
Direct Illum. ¢
,l, > —» + ——»
»V

Figure 11: Extending the dependent test scattering al-
gorithm to multiple scattering. Each box indicates a
texture that is generated with regular bump mapping.

For the total illumination in a height field, we sum
up the contributions for several such paths (some 40-
100 in most of our scenes). This way, we compute the
illumination in the complete height field at once, using
two SIMD-style operations on the whole height field
texture: bump mapping for direct illumination, using
two given directions for incoming and outgoing light,
as well as a lookup of the indirect illumination in a tex-
ture map using the precomputed visibility data in form
of the textures S;.

3.2.1 Use of Graphics Hardware

In recent graphics hardware, both on the workstation
and on the consumer level, several new features have
been introduced that we can make use of. In par-
ticular, we assume a standard OpenGL-like graphics
pipeline [26] with some extensions as described in the
following.

Firstly, we assume the hardware has some way of
rendering bump maps. This can either be supported

3-11

through specific extensions (e.g. [21]), or through the
OpenGL imaging subset [26], as described by Heidrich
and Seidel [9]. Any kind of bump mapping scheme will
be sufficient for our purposes, but the kind of reflection
model available in this bump mapping step will deter-
mine what reflection model we can use to illuminate
our hight field.

Secondly, we will need a way of interpreting the
components stored in one texture or image as texture
coordinates pointing into another texture. One way
of supporting this is the so-called pixel ftexture ex-
tension [10, 9], which performs this operation during
transfer of images into the frame buffer, and is currently
only available on some high-end SGI machines. Alter-
natively, we can use dependent texture lookups, a vari-
ant of multi-texturing, that has recently become avail-
able on some newer PC graphics boards. With depen-
dent texturing, we can map two or more textures simul-
taneously onto an object, where the texture coordinates
of the second texture are obtained from the components
of the first texture. This is exactly the feature we are
looking for. In case we have hardware that supports
neither of the two, it is quite simple, although not very
fast, to implement the pixel texture extension in soft-
ware: the framebuffer is read out to main memory, and
each pixel is replaced by a value looked up from a tex-
ture, using the previous contents of the pixel as texture
coordinates.

Using these two features, dependent texturing and
bump mapping, the implementation of the dependent
test method as described above is simple. As depicted
in Figure 10, the scattering of light via two points p
and q in the height field first requires us to compute
the direct illumination in q. If we do this for all grid
points we obtain a texture L4 containing the reflected
light caused by the direct illumination in each point.
This texture L4 is generated using the bump mapping
mechanism the hardware provides. Typically, the hard-
ware will support only diffuse and Phong reflections,
but if it supports more general models, then these can
also be used for our scattering implementation.

The second reflection in p is also a bump mapping
step (although with different viewing- and light direc-
tions), but this time the direct illumination from the
light source has to be replaced by a per-pixel radi-
ance value corresponding to the reflected radiance of
the point q visible from p in the scattering direction.
We achieve this by bump mapping the surface with a
light intensity of 1, and by afterwards applying a pixel-

wise multiplication of the value looked up from L4 with
the help of dependent texturing. Figure 12 shows how
to conceptually set up a multi-texturing system with de-
pendent textures to achieve this result.

—_— S;
q
L;
Ly —

Figure 12: For computing the indirect light with the
help of graphics hardware, we conceptually require a
multi-texturing system with dependent texture lookups.
This figure illustrates how this system has to be set up.
Boxes indicate one of the two textures, while incom-
ing arrows signal texture coordinates and outgoing ones
mean the resulting color values.

The first texture is the S; that corresponds to the scat-
tering direction d;. For each point p it yields q, the
point visible from p in direction d;. The second tex-
ture Ly contains the reflected direct light in each point,
which acts as an incoming radiance at p. Figure 13
shows some results of the method.

Figure 13: A bump map with and without indirect illu-
mination

By using this hardware approach, we treat the graph-
ics board as a SIMD-like machine which performs the
desired operations, and computes one light path for
each of the grid points at once. This use of hardware
dramatically increases the performance over the soft-
ware version to an almost interactive rate.

4 Conclusion

In this part, we have reviewed some of the more com-
plex shading algorithms that utilize graphics hardware.
While the individual methods are certainly quite differ-
ent, there are some features that occur in all examples:

3-12

The most expensive operations (i.e. visibility
computations, filtering of environment maps etc.)
are not performed on the fly, but are done in a pre-
computing step.

The results of the precomputation are represented
in a sampled (tabular) form that allows us to use
texture mapping to apply the information in the
actual shaders.

The shaders themselves are often relatively sim-
ple due to the amount of precomputation. They
mostly have the job of combining the precomputed
textures in various flexible ways.

The textures need to be parameterized in such a
way that the texture coordinates are easy and effi-
cient to generate, ideally directly in hardware.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Kurt Akeley. RealityEngine graphics. In Com-
puter Graphics (SIGGRAPH ’93 Proceedings),
pages 109-116, August 1993.

David C. Banks. Illumination in diverse codi-
mensions. In Computer Graphics (Proceedings
of SIGGRAPH ’94), pages 327-334, July 1994,

Petr Beckmann and Andre Spizzichino. The Scat-

tering of Electromagnetic Waves from Rough Sur-
faces. McMillan, 1963.

James F. Blinn. Simulation of wrinkled surfaces.
In Computer Graphics (SIGGRAPH 78 Proceed-
ings), pages 286-292, August 1978.

Paul E. Debevec. Rendering synthetic objects into
real scenes: Bridging traditional and image-based
graphics with global illumination and high dy-
namic range photography. In Computer Graphics
(SIGGRAPH 98 Proceedings), pages 189-198,
July 1998.

Ned Greene. Applications of world projections.
In Proceedings of Graphics Interface '86, pages
108-114, May 1986.

Paul E. Haeberli and Kurt Akeley. The accumu-
lation buffer: Hardware support for high-quality
rendering. In Computer Graphics (SIGGRAPH
"90 Proceedings), pages 309-318, August 1990.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

3-13

W. Heidrich, K. Daubert, J. Kautz, and H.-P. Sei-
del. Illuminating Micro Geometry Based on Pre-
computed Visibility. In Computer Graphics (SIG-
GRAPH 00 Proceedings), pages 455-464, July
2000.

Wolfgang Heidrich and Hans-Peter Seidel. Real-
istic, hardware-accelerated shading and lighting.
In Computer Graphics (SIGGRAPH *99 Proceed-
ings), August 1999.

Silicon Graphics Inc. Pixel Texture Extension, De-
cember 1996. Specification document, available
from http://www.opengl.org.

Jan Kautz, Wolfgang Heidrich, and Katja
Daubert. Bump map shadows for OpenGL render-
ing. Technical Report MPI-I-2000-4-001, Max-
Planck-Institut fiir Informatik, 2000.

Jan Kautz and Michael D. McCool. Interactive
rendering with arbitrary BRDFs using separable
approximations. In Rendering Techniques 99
(Proc. of Eurographics Workshop on Rendering),
pages 247 — 260, June 1999.

Jan Kautz, Pere-Pau Vazquez, Wolfgang Hei-
drich, and Hans-Peter Seidel. Unified approach to
prefiltered environment maps. In Rendering Tech-
niques "00.

Mark Kilgard. A practical and robust bump map-
ping technique. Technical report, NVIDIA, 2000.
available from http://www.nvidia.com.

Robert R. Lewis. Making shaders more physically
plausible. In Fourth Eurographics Workshop on
Rendering, pages 47-62, June 1993.

Erik Lindholm, Mark Kilgard, and Henry More-
ton. A user-programmable vertex engine. In Com-
puter Graphics (SIGGRAPH ’01 Proceedings),
August 2001.

Nelson L. Max. Horizon mapping: shadows for
bump-mapped surfaces. The Visual Computer,
4(2):109-117, July 1988.

Anis Ahmad Michael D. McCool, Jason Ang.
Homomorphic factorization of BRDFs for high-

performance rendering. In Computer Graphics
(SIGGRAPH 01 Proceedings), 2001.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Gavin Miller, Steven Rubin, and Dulce Pon-
celeon. Lazy decompression of surface light fields
for precomputed global illumination. In Render-
ing Techniques 98 (Proceedings of Eurograph-
ics Rendering Workshop), pages 281-292, March
1998.

John S. Montrym, Daniel R. Baum, David L. Dig-
nam, and Christopher J. Migdal. InfiniteReality:
A real-time graphics system. In Computer Graph-
ics (SIGGRAPH ’97 Proceedings), pages 293—
302, August 1997.

NVIDIA Corporation. NVIDIA OpenGL Exten-
sion Specifications, October 1999. Available from
http://www.nvidia.com.

Mark Peercy, John Airey, and Brian Cabral. Ef-
ficient bump mapping hardware. In Computer
Graphics (SIGGRAPH 97 Proceedings), pages
303-306, August 1997.

Andreas Schilling, Giinter Knittel, and Wolfgang
StraBer. Texram: A smart memory for textur-
ing. IEEE Computer Graphics and Applications,
16(3):32—-41, May 1996.

Christophe Schlick. A customizable reflectance
model for everyday rendering. In Fourth Euro-
graphics Workshop on Rendering, pages 73-83,
June 1993.

Marc Segal, Carl Korobkin, Rolf van Widenfelt,
Jim Foran, and Paul Haeberli. Fast shadow and
lighting effects using texture mapping. Com-
puter Graphics (SIGGRAPH 92 Proceedings),
26(2):249-252, July 1992.

Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Specification (Version 1.2),
1998.

Bruce G. Smith. Geometrical shadowing of a ran-
dom rough surface. IEEE Transactions on Anten-
nas and Propagation, 15(5):668-671, September
1967.

Detlev Stalling, Malte Zockler, and Hans-
Christian Hege. Fast display of illuminated field
lines. IEEE Transactions on Visualization and
Computer Graphics, 3(2):118-128, 1997.

[29]

[30]

[31]

[32]

[33]

3-14

Kenneth E. Torrance and E. M. Sparrow. Theory
for off-specular reflection from roughened sur-
faces. Journal of the Optical Society of America,
57(9):1105-1114, September 1967.

D. Voorhies and J. Foran. Reflection vector
shading hardware. In Computer Graphics (SIG-
GRAPH °94 Proceedings), pages 163-166, July
1994.

Gregory J. Ward. Measuring and modeling
anisotropic reflection. Computer Graphics (SIG-
GRAPH °92 Proceedings), pages 265-273, July
1992.

Riidiger Westermann and Thomas Ertl. Efficiently
using graphics hardware in volume rendering ap-
plications. In Computer Graphics (SIGGRAPH
"98 Proceedings), pages 169-178, July 1998.

Lance Williams. Casting curved shadows on
curved surfaces. In Computer Graphics (SIG-
GRAPH ’78 Proceedings), pages 270-274, Au-
gust 1978.

Chapter 4
In the beginning: The Pixel Stream Editor

Ken Perlin

4. In the beginning: the pixel stream editor

Procedural texture

Combining controlled noise into various mathematical expressions produces procedural
texture EBERT98],[FOLEY96],[PERLIN85].

Unlike traditional texture mapping, procedural texture doesn't require a source texture
image. As a result, the bandwidth requirements for transmitting or storing procedural
textures are essentially zero.

Also, procedural texture can be applied directly onto a three dimensional object. This
avoids the "mapping problem" of traditional texture mapping. Instead of trying to figure
out how to wrap a two dimensional texture image around a complex object, you can just
dip the object into a soup of procedural texture material, defined as a function over a
volumetric domain. Essentially, the virtual object is carved out of a virtual solid material
defined by the procedural texture. For this reason, procedural texture is sometimes called
solid texture.

TRON

| first started to think seriously about procedural textures when | was working on TRON at
MAGI in ElImsford, NY, in 1981. TRON was the first movie with a large amount of solid
shaded computer graphics. This made it revolutionary. On the other hand, the look
designed for it by its creator Steven Lisberger was based around the known limitations of
the technology.

Lisberger had gotten the idea for TRON after seeing the MAGI demo reel in 1978. He then
approached the Walt Disney Company with his concept. Disney's Feature Film division
was then under the visionary guidance of Tom Wilhite, who arranged for contributions
from the various computer graphics companies of the day, including Ill, MAGI, and
Digital Effects.

Working on TRON was a blast, but on some level | was frustrated by the fact that
everything looked machine-like (a typical scene is shown below). In fact, that machine-
like aesthetic became the "look" associated with MAGI in the wake of TRON. So | got to
work trying to help us break out of the "machine-look ghetto."

One of the factors that influenced me was the fact that MAGlI's SynthaVision system did
not use polygons. Rather, everything was built from boolean combinations of
mathematical primitives, such as ellipsoids, cylinders, truncated cones. As you can see in
the illustration, the lightcycles are created by adding and subtracting simple solid
mathematical shapes.

This encouraged me to think of texturing in terms not of surfaces, but of volumes. First |
developed what are now called "projection textures," which were also independently
developed by a quite a few folks. Unfortunately (or fortunately, depending on how you
look at it) our Perkin-Elmer and Gould SEL computers, while extremely fast for the time,
had very little RAM, so we couldn't fit detailed texture images into memory. | started to
look for other approaches.

Noise

The first thing | did in 1983 was to create a primitive space-filling signal that would give
an impression of randomness. It needed to have variation that looked random, and yet it
needed to be controllable, so it could be used to design various looks. | set about
designing a primitive that would be "random" but with all its visual features roughly the
same size (no high or low spatial frequencies).

| ended up developing a simple pseudo-random "noise" function that fills all of three
dimensional space. A slice out of this stuff is pictured. In order to make it controllable, the
important thing is that all the apparently random variations be the same size and roughly
isotropic. Ideally, you want to be able to do arbitrary translations and rotations without
changing its appearance too much. You can find a C version of my original 1983 code for
the first version in Appendix A (actually my first implementation was in FORTRAN).

My goal was to be able to use this function in functional expressions to make natural
looking textures. | gave it a range of -1 to +1 (like sine and cosine) so that it would have a
dc component of zero. This would make it easy to use noise to perturb things, and simply
"fuzz out" to zero when scaled to be small.

Noise itself doesn't do much except make a simple pseudo-random pattern. But it
provides seasoning to help you make things irregular enough so that you can make them
look more interesting.

The fact that noise doesn't repeat makes it useful the way a paint brush is useful when
painting. You use a particular paint brush because the bristles have a particular statistical
quality - because of the size and spacing and stiffness of the bristles. You don't know, or
want to know, about the arrangement of each particular bristle. In effect, oil painters use a
controlled random process (centuries before John Cage used the concept to make post-
modern art).

Noise allowed me to do that with mathematical expressions to make textures.

Pixel stream editing

In late 1983 | wrote a language to allow me to execute arbitrary shading and texturing
programs. For each pixel of an image, the language took in surface position and normal
as well as material ID, ran a shading, lighting and texturing program, and output color. As
far as I've been able to determine, this was the first shader language in existence (as my
grandmother would have said, who knew?).

Rob Cook at Pixar had, independently, developed an editable expression parser to parse
user-defined arithmetic expressions at each surface sample. He called this technique
"Shade Trees." But Shade Trees had no notion of flow-of-control (conditionals, variably
iterated loops, procedures).

Pat Hanrahan has told me that he got the inspiration to make a full procedural shading
language after he visited MAGI and | showed him what you could do by having access to
a user-defined language at every pixel. Pat then designed and implemented the

"RenderMan" shading language at Pixar (for which he received a well-deserved Technical
Academy Award).

The key leap of faith | made (odd then, obvious now) is that you should just be able to go
ahead and run whatever program you feel like at each surface sample, and that it should
be easy to keep quickly modifying this program to refine your results. In order to make
things run fast, | modified MAGI's existing SynthaVision renderer to create an
intermediate file, after the visible surface and normal calculations have been done. The
file just contained a stream of pixel samples, each consisting of { Point , Normal ,
Surfaceld }. | would stream these samples into my procedural shader, which would then
spit out a final RGB for each sample. The big advantage of this is that | could keep
running the shader over and over, without having to redo the (in 1983) very expensive
point/normal calculations.

By far the oddest thing about the environment at MAGI, in retrospect, was the fact that
they ran everything in FORTRAN 66. This was a legacy issue - the SynthaVision ray
tracer was originally written by Bob Goldstein, one of the founders of MAGI, sometime
prior to 1968 (Bob's first paper on doing volumetric booleans by ray tracing, was
published in the journal Simulation in 1968). Since then it had simply grown in the same
language. FORTRAN 66 was very limiting - lacking recursion, insensitive to case, limited
in variable name length to six characters or less, and a host of other qualities that
reflected the era it came out of - the engineering culture up to the mid-sixties, which was
very unlike the more countercultural aesthetic that nurtured UNIX and C at Bell Labs.

| was one of a group of young upstarts at MAGI who were into UNIX and C, but were not
permitted to use it, for legacy reasons. So my solution was to build an entire language on
top of FORTRAN. | implemented in FORTRAN only those core "kernel" functions that
needed to be computed quickly, such as Noise, or that needed to use built-in math
libraries, such as Sin and Cos. For everything else, | used my homegrown shading
language. For this reason, | called it "kpl", for "Kernel Programming Language". It has
been claimed that the letters "kpl" could also be interpreted in other ways, but frankly | just
don't see it.

Kpl was a special purpose language - the only thing | really cared about was being able
to manipulate floating point vectors verey easily. This led to a number of language design
decisions which made everything easier. In the next section I'll briefly describe the
language.

The important thing about reducing everything to floating point vectors was that | could
treat normal perturbation, local variations in specularity, nonisotropic reflection models,
shading, lighting, etc. as just different forms of procedural texture - the environment does
not make any a priori assumption about these things, so it was easy to mix it up and try
different models.

The language for Pixel Stream Editing

The language was very simple, but it got the job done. The important thing was that it
compiled immediately into an intermediate P-code, which executed very fast. That
allowed me to do fast repeated design iterations, with visual feedback at each iteration.

Perhaps the oddest feature of the language was that every variable maintained a
separate stack - so scoping for any variable was based on run-time execution, not
lexical. This turned out to be extremely useful for procedural texturing, since it provided an
easy and flexible way to create nested data environments. The basic features of the
language are outlined below:

« Stack language
» Post-process to visible surface algorithm
* Intermediate "point/normal/id list" data-structure
 Evaluated at every surface sample
« Variables set at each sample:
* Point
* Normal
eld
« All values are vectors of floating point
« Transform matrices are vectors of length 12 or 16
« Values are TRUE iff at least one component is non-zero
* Every variable is a stack of values
« Flow of control:
«IF THEN ELSE
* LOOP with CONDITIONAL-BREAK
« PROCEDURE with ARGS
» Scoping
« ASSIGN (var is global to this proc)
« PUSH-ASSIGN (var is local to this proc)
« POP ON PROCEDURE EXIT
« Library of kernel functions, including:
o+ -/
* Index
* Noise
* Bias
» Gain
* Sin
«Cos
* Pow
* Mul (matrix)
* Library implemented in the language, including:
» Abs
* Dot

* Cross

Experience and interaction

My interactive process when working with this first shader was really simple. | had two
interaction windows: a text editor and an rendered-image display. I'd make text
modifications, hit a key that would save and run, and then look at the result. Then I'd
make more text modifications, etc.

When playing with this interaction environment, | found that | could get big speedups by
recomputing just a sub-window in the image where | really wanted to see an effect. | was
able to get a good rhythm going of iterative shading/texturing as long as | could see the
result within about 15 seconds of hitting the ENTER key (compilation took much less than
a second; pretty much all of the time was taken up calculating the image). Of course,
back in 1984 this didn't allow me to compute very high resolution images (around then we
had only a few Mhz to play with), but any longer than 15 seconds of computation was too
long to maintain a good interactive process. In any case, by looking at carefully selected
subwindows, | could interactively steer the quality of the complete texture. Ultimately, it
turned out to be fairly straightforward to interactively design subtle textures such as the
marble vase below, which took about 20 minutes back then to render at high resolution
(but would require only a matter of seconds on today's computers):

Industry adoption

| presented this work first at a course in SIGGRAPH 84, and then as a paper in
SIGGRAPH 85. Because the techniques were so simple, they quickly got adopted
throughout the industry. The release of Pixar's commercial-strength RenderMan
language helped a lot. By around 1988 noise-based shaders where de rigeurin
commercial software.

| didn't patent. As my grandmother would have said...

Hypertexture

Meanwhile, | joined the faculty at NYU and did all sorts of research. One of the questions |
was asking in 1988 and 1989 was whether you could use procedural textures to unify
rendering and shape modeling. | started to define volume-filling procedural textures and
render them by marching rays through the volumes, accumulating density along the way
and using the density gradient to do lighting.

| worked with a student of mine, Eric Hoffert, to produce a SIGGRAPH paper in 1989
[PERLIN89]. The technique is called hypertexture, officially because it is texture in a
higher dimension, but actually because the word sounds like "hypertext" and for some
reason | thought this was funny at the time. | offer no redeeming excuse.

The image above is of a procedurally generated rock archway. Like all hypertextures, it's
really a density cloud that's been "sharpened" to look like a solid object. | defined this
hypertexture first by defining a space-filling function that has a smooth isosurface
contour in the shape of an archway. Then | added to this function a fractal sum of noise
functions: at each iteration of the sum | doubled the frequency and halved the amplitude.
Finally, | applied a high gain to the density function, so that the transition from zero to one
would be rapid (about two ray samples thick). When you march rays through this function,
you get the image shown.

| tried to make as many different materials as possible. Above is one of a series of
experiments in simulating woven fabric. To make this, | first defined a flat slab, in which
density is one when y=0, and then drops off to zero when y wanders off its zero plane.
More formally: f(x,y,z) = {if |y| > 1 then 0 else 1 - |y|}.

| made the plane ripple up and down by replacing y with y + sin(x)*sin(z) before
evaluating the slab function. Then | cut the slab into fibers by multiplying the slab function
by cos(x). This gave me the warp threads of a woven material. Finally, | rotated the whole

thing by 90° to get the weft threads. When you add the warp and the weft together, you
get something like the material on the left.

To make the fiber more coarse (ie: wooley) or conversely more fine, | modulated the bias
and gain of the resulting function. To make the surface undulate, | added low frequency
noise to y before evaluating anything. To give a nice irregular quality to the cloth, | added
high frequency noise into the function.

| also made a Tribble, as shown here, as well as other experiments in "furrier synthesis".
Here | shaped the density cloud into long fibers, by defining a high frequency spot
function (via noise) onto an inner surface, and then, from any point P in the volume,
projecting down onto this surface, and using the density on the surface to define the
density at P. This tends to make long fibrous shapes, since it results in equal densities all
along the line above any given point on the inner surface.

| made the hairs curl by adding low frequency noise into the domain of the density
function. This was the first example in computer graphics of long and curly fur. Around
the same time Jim Kajiya made some really cool fur models, although his techniques
produced only short and straight fur. Jim had the good sense to use earthly plushy toys
for his shape models, instead of alien ones. The earthly ones are more easily recognized
by the academy...

It has always seemed to me that there would be advantages in having optical materials
with continually varying density, within which light travels in curved paths. The image on
the left is a hypertexture experiment in continuous refraction. The object is transparent,
and every point on its interior has a different index of refraction. | implemented a
volumetric version of Snell's law, to trace the curved paths made by light as it traveled
through the object's interior.

The background is not really an out-of-focus scene; it's just low frequency noise added
to a color grad. This is a situation in which noise is really convenient - to give that look of
"there's something in background, and | don't know what it is, but it looks reasonable and
it sure is out of focus."

Meanwhile, back at the Ranch...

Meanwhile, back at the Ranch (if you're reading this you presumably know which ranch
I'm talking about) the use of noise spread like wildfire. All the James Cameron,
Schwartzenegger, Star Trek, Batman, etc. movies started relying on it.

Procedural texture benefits from Moore's law: as computer CPU time becomes cheaper,
production companies increasingly have turned away from physical models, and toward

4-11

computer graphics. Noise-based procedural shading is one of the main techniques
production companies use to fool audiences into thinking that computer graphic models
have the subtle irregularities of real objects. For example, Disney put it into their CAPS
system - you can see it in the mists and layered atmosphere in high end animated
features like The Lion King. In fact, after around 1990 or so, every Hollywood effects film
has used it, since they all make use of software shaders, and software shaders depend
heavily on noise. Eventually, they even gave me a Technical Academy Award for it
[SCITECH97].

One problem with all this is that as audience expectations improve, the size and
computational complexity of shaders has been increasing steadily. For example, "The
Perfect Storm" averaged about 200 evaluations of Noise per shading sample. Even with
the current impressive performance of computers, each frame took a long time to
compute.

Recently I've been working on addressing this problem. In my next chapter, I'll show work
I've been doing more recently on making Noise better, faster, and more "hardware
friendly".

References:

[EBERT98] Texturing and Modeling; A Procedural Approach, Second Edition; Ebert D. et
al, AP Professional; Cambridge 1998c;

[PERLIN89] Perlin, K., and Hoffert, E., Hypertexture, 1989 Computer Graphics
(proceedings of ACM SIGGRAPH Conference); Vol. 23 No. 3.

[PERLINS85] Perlin, K., An Image Synthesizer, Computer Graphics; Vol. 19 No. 3.
[SCITECH97] Technical Aphievemegt Award from the Academy of Motion Picture Arts

and Sciences, “for the development of Perlin Noise, a technique used to produce natural
appearing textures on computer generated surfaces for motion picture visual effects."

Chapter 5
PixelFlow Shading

Marc Olano

OpenGL Extensions and Restrictions for PixelFlow

Jon Leech
University of North Carolina

April 20, 1998

Abstract

This document describes the extensions to OpenGL supported by the PixelFlow API,
restrictions forced by the architecture, and as-yet unimplemented features.

Copyright (©1995, 1996, 1997 The University of North Carolina at Chapel Hill.

This document contains unpublished proprietary information. Any copying, adapation, or
distribution of this document without the express written consent of the University of North
Carolina at Chapel Hill is strictly prohibited. The receipt or possession of this document does
not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture,
use, or sell anything that it may describe, in whole or in part.

READERS OUTSIDE UNC-CH AND HEWLETT-PACKARD PLEASE
NOTE: This is an internal working document. The final implementation may differ sub-
stantially.

PixelFlow is a trademark of the University of North Carolina.

OpenGL is a trademark of Silicon Graphics, Inc.

Contents

1

Introduction

1.1 Roadmap

1.2 Change Log e

Frame Generation

2.1 Frame Setup

2.2 Geometry Definition

2.3 Endof Frame

2.4 Example e e

Controlling Primitive and State Distribution

3.1 Primitive Distribution Algorithm oo

Extending the OpenGL Namespace

4.1 Functions

4.2 Enumerants e

4.3 New Namespaces oo v v
4.3.1 Names of OpenGL Objects

Loading Application-Defined Code

Programmable Rasterization

6.1 Loading and Using Rasterizer Functions
6.1.1 Example.
6.2 Rasterizer API Definitions L
6.3 glVertex() and Sequence Points Lo Lo
6.4 Vertex Array Extensions for Rasterizers and Shaders
6.5 Interpolators
6.6 Interpolator API Definitions
Programmable Shading
7.1 Creating Shaders
7.1.1 Example.
7.2 Using Shaders L
7.2.1 Example.
7.3 Shading API Definitions Lo
74 ToBeDone e
Programmable Lighting
8.1 Creating Lights
8.1.1 Example.
8.2 Using Lights.
8.2.1 Example.
8.3 Light API Definitions L

10
10

12
12
12
12
13

13

14
15
16
16
17
17
18
18

19
20
20
21
21
23
26

9 Programming Other Pipeline Stages - to be written 30

9.1 Atmospheric. 30
9.2 Warping e 30
10 Transparency and Other Blending Effects 30
10.1 Transparency o o o v v v v e e 30
10.1.1 Determining Transparencyo 31

11 Display List Optimization - to be written 31
12 Multiple Application Threads - to be written 31
13 OpenGL Variances - to be written 31
14 Unsupported OpenGL Features - to be written 32
15 Function, Enumerant, and Name Tables 32
15.1 Light Function and Parameter Names 32
15.2 Rasterizer Function and Parameter Names 33
15.3 Shader Function and Parameter Names 33
15.4 Atmospheric Function and Parameter Names 33
15.5 Interpolator Names 33
15.6 Defined Constants 35
16 Glossary 35
17 Credits 36
References 37

List of Tables

1 Built-in light source parameter nameso 32

2 Built-in rasterizer functions o000 33

3 Built-in material parameters o000 34

4 Built-in atmospheric parameterso 34

5 Built-in interpolator nameso 34

6 Defined constants 35
4

1 Introduction

This document describes the PzGL graphics APT for the UNC/Hewlett-Packard PizelFlow
[3] architecture. PxGL is based on the OpenGL [1] API with extensions, restrictions, and
unimplemented features'. Only material which differs between PxGL and a conformant
OpenGL implementation is covered; readers are expected to be conversant with OpenGL
proper.

PixelFlow has enormous flexibility because almost all stages of the graphics pipeline
- transformation, rasterization, and shading - are implemented with user-programmable
hardware. In order to exploit this capability in the framework of a traditional graphics API,

we have extended OpenGL to specify

e When to load and invoke application-defined code (rather than built-in functionality,
such as rendering lit, Gouraud-shaded triangles).

e Which stage of the pipeline to invoke it at.

e What parameters to pass when the code 1s executed.

To optimize performance of OpenGL code on PixelFlow, some architectural details of the
machine are exposed to the API. Using these features may relax some OpenGL guarantees
or invariants in return for greatly improved performance. They include

¢ Primitive and state distribution, which balances rendering load across the parallel
geometry processors while affecting the order in which primitives are composited into
the frame buffer.

e Display list optimization, which increases performance of upper stages of the
pipeline while relaxing knowledge of global state.

While PixelFlow has far more flexibility in most respects than more traditional graphics
accelerators, it also has certain constraints not present in those machines. Most notably, the
nature of the image-composition architecture forces a frame oriented paradigm on the API,
and implies that there is no valid frame buffer containing pixel colors until after rasterization
and shading of all primitives in that frame is complete. PixelFlow also uses a deferred
shading model, in which pixel color is not computed until after visibility determination.
The consequences of these and other minor architectural and design decisions are that

e Additional, non-standard OpenGL calls are required to delimit the start and end of
frame generation.

e Much of the global rendering state (textures, lights, view matrices, and other state
which is not associated to individual primitives) must be defined prior to start of frame
and may not change within the frame.

e Many API calls are only allowed at specific points in the process of generating a frame.

1PixelFlow will support a fully conformant OpenGL API, but in general that mode will not be used
because of its expected substantial performance cost.

e Most types of blending and stenciling are not supported, and composition order of
primitives is not guaranteed.

e Access to the frame buffer may only take place after end of frame.

Finally, many features of the rich OpenGL API are not implemented in PxGL at this
time, though they may be added later.

1.1 Roadmap

The remainder of this document will address the following areas:

e Frame generation (§2).

e Controlling primitive and state distribution (§3).
e Extending the OpenGL namespace (§4).
¢ Loading application-defined code (§5).

e Programmable rasterization (§6).

e Programmable shading (§7).

e Programmable lighting (§8).

e Used-defined functions (§77).

e Other programmable pipeline stages (§9).
e Transparency and shadows effects (§10).
e Display list optimization (§11).

e Multiple application threads (§12).

e OpenGL variances (§13).

e Unsupported OpenGL features (§14).

1.2 Change Log

This is revision Revision : 1.9 of Source : /tmppnt/net/hydra/pp0/doc/software/opengl/tex/RCS/prgl.tex, v.
Changes from the next most recent revision are delimited by change bars (or approximations
thereof in the HTML version).

Changes in revision 1.9 (July 22, 1997):
e Changed all uses of glinquireParameterEXT() to

glGetMaterialParameterNameEXT() or glGetRastParameterNameEXT()
as appropriate.

e Note that glGetLightParameterNameEXT() and other stage-specific inquiry
functions will need to be documented and created.

e Added to section on primitive and state distribution, including
pxDistributionMode() and glGenDataEXT().

o Added section on user-defined functions.
Changes in revision 1.8 (August 1, 1996):

e Changed references from Division to Hewlett-Packard to reflect PFX sale to HP.

e Added new inquiry calls for rasterizer and shader parameters (though details remain
to be documented).

e Rearranged glossary entries in section 7 to group parameter terminology together, at
Rich Holloway’s suggestion.

e Added section on transparency and blending effects, including
glTransparencyEXT().

Changes in revision 1.7 (March 22, 1996):
e glShaderEXT() now allows different shaders on front and back faces of primitives.

e Added discussion to glSurfaceEXT() definition of the restriction of a single value
for uniform and nonvarying parameters, regardless of whether the front or back face
of a primitive is being rasterized.

e Added discussion to glMaterialVaryingEXT() definition of the reason for the
apparently-redundant shaderid argument.

¢ Added glLightModelEXT() to lighting chapter, specifying that user-defined shader
parameters are handled in the same way as OpenGL material parameters.

Changes in revision 1.6 (February 12, 1996):

e First version released to outside readers; added disclaimers.

e Removed definitions of hardware-specific terms like composition/geometry network
parameters, and changed definitions of varying/nonvarying/uniform parameters to
eliminate dependence on those terms.

e Added face argument to glSurfaceEXT().
Changes in revision 1.5 (December 17, 1995):

e Added calls for light groups and loadable light functions.

e Removed glGenShaderEXT() and folded its functionality into
glNewShaderEXT().

o Added sections (though little text yet) for atmospheric and image warping shader
stages.

e Changed glSurfaceParamEXT() to glRastParamEXT() to avoid too-close simi-
larity to glSurfaceEXT().

e Updated to reflect separate-namespace model for parameters and separation of in-
stance and current values. In particular, glBindParameterEXT() has been replaced
by glSurfaceEXT(), although the name of the latter may change.

e Rewrote interpolator introduction.
Changes in revision 1.4 (November 14, 1995):
e Moved document from ETEX 2.09 to IXTEX 2¢.
e Added changebars using changebar.sty.
Changes in revision 1.3 (November 11, 1995):

e Added flat interpolator for per-primitive constant parameters.

¢ Added glBindParameterEXT() and glGetParameterEXT().

e glShaderEXT() now takes a face argument. Added GL_FRONT_SHADER EXT and
GL_BACK_SHADER EXT as targets to glGet().

e Worked on definitions of composition network and geometry network parameters; more

work 1s needed.

2 Frame Generation

The underlying hardware model in OpenGL is that primitives are specified by the application
and immediately drawn - vertices are transformed and lit, rasterization and texturing are
done, and final pixel colors are copied into the frame buffer, or blended with existing frame
buffer contents. Global parameters affecting transformation, rasterization, and shading of
primitives, such as the projection matrix, light bindings, blending modes, and so on, may
be changed at any time.

This model is not compatible with PixelFlow’s image composition and deferred shading
paradigms. In order to achieve good performance on the machine, the API must be frame-
oriented; that is, 1t must specify several stages in the process of generating a frame, and
different types of OpenGL operations may occur only during specific stages. The stages and
the types of calls that may take place during them are:

e Frame setup - establish viewing, lighting, and shading parameters that will apply
throughout the frame.

¢ Geometry definition - traverse the database, rasterizing primitives.

e End of frame - perform image composition, shade pixels, and read/write directly to
the frame buffer.

2.1 Frame Setup

The setup stage begins by calling glBeginFrameEXT(). In this stage, parameters which
globally affect the scene are defined. This includes defining the projection matrix, loading
light functions, creating lights and light groups, changing light source parameters, loading
shader functions, creating shaders, changing nonvarying shader parameters, loading ras-
terizer functions, binding textures, and any other operations that must be known before
primitives can be rasterized and shaded (a complete list of OpenGL calls and the stages
they may be called for is in section 13). Parameters of the scene such as the viewport size,
antialiasing kernel, and background color are also set here; these must be known to define
the rendering recipe.

PxGL currently allows only a single projection matrix to be used during a frame. Many
lighting environments may be used, but they must be defined as light groups. Many textures
may be used, but they must be defined during frame setup using the texture object calls?.

2.2 Geometry Definition

The geometry stage begins by calling glStart GeometryEXT(). In this stage, primitives
are defined and rasterized by different rasterizer boards. Valid calls include operations on
the modelling and texture matrices, setting material values and other attributes, changing
the current texture, and other changes to global state which affect only transformation and
rasterization. Display lists may be compiled and executed, or primitives may be issued in
immediate mode.

2.3 End of Frame

The final stage begins when glEndFrameEXT() is called. Once it returns, the frame
buffer is defined. At this time it may be accessed using functions like glReadPixels()
or glCopyTexture()3. We expect to support other frame buffer operations such as
glAccum() at a later date.

2.4 Example

This code fragment draws a frame containing a single red triangle. Lights are assumed to
have been defined previously.

glBeginFrameEXT();

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 3.0);

2The reason for these restrictions is that while performing deferred shading, the viewing, lighting, and
texturing environment is assumed to be the same for all samples. If this were not the case, such information
would have to be encoded along with each sample, which would enormously increase the amount of pixel
memory needed for a sample. By creating named objects representing these environments, we regain this
capability, although not at OpenGL’s per-primitive granularity.

3Hopefully, for e.g. shadow maps.

glMatrixMode (GL_MODELVIEW) ;
glTranslatef(0.0, 0.0, -2.0);

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glStartGeometryEXT();

glColor3£(1.0, 0.0, 0.0);
ngegin(GL_TRIANGLES);
glVertex3f(-1.0, -1.0, 0.0)
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(1.0, -1.0, 0.0)
glEnd();

>

> 3

glEndFrameEXT();

Example - Frame generation

3 Controlling Primitive and State Distribution

The PixelFlow architecture achieves scalability by using many parallel rasterizers, each
of which is responsible for transforming and rasterizing a portion of the database, and
shaders, each of which is responsible for lighting and shading a portion of the pixels in the
image. However, primitives are defined in sequential order by the application. So to achieve
good rasterization performance, all the primitives defined in the course of a frame must be
distributed among the rasterizers.

PxGL has a built-in distribution algorithm, and in most cases, an application does not
need to be aware of or make changes in this algorithm. However, in some cases application
performance can be increased by modifying how primitives are distributed.

This section describes how primitives are distributed, the implications of the distribu-
tion algorithm on graphical state maintenance and performance, and how applications may
control distribution.

3.1 Primitive Distribution Algorithm

In the remainder of this section, we assume that a PixelFlow system with N rasterizer boards
is being used, and that M geometric primitives are to be distributed, where M > N.

To be done: call to specify processor groups + comments on ordering implications of
distributing primitives, state maintenance, per-verter state not neccessarily affecting global
state.

The calls controlling distribution are*

GLenum pxDistributionMode(GLenum type, GLenum mode, GLint param)

4The pbase headers don’t use GL types for the prototypes, and return void - this inconsistency needs to
be resolved.

10

GLenum

Changes how GL commands are distributed to rasterizers and shaders. type specifies
the type of commands to be affected, and may take on the following values:

PX PRIMITIVE EXT - affects sequences of commands delimited by a
glBegin() ...glEnd() block, which are normally rasterizer primitives such
as triangles.

PX_STATE EXT - affects all other commands not within a block®.
PX_TEXTURE_EXT - affects textures®.

mode specifies how that type of command is distributed, and may take on the
following values:

PX_DEFAULT EXT - commands are sent in according a default mapping
scheme.

PX_BROADCAST EXT - commands are sent to all rasterizers that may use
them.

PX_ROUND ROBIN_EXT - commands are sent to a single rasterizer or shader,
but successive commands are sent to different rasterizers or shaders in a
simple sequence specified by param, for load balancing purposes.
PX_ROUND ROBIN _WEIGHTED EXT - commands are sent to a single rasterizer or
shader, but successive commands are sent to different rasterizers or shaders
in a sequence determined by the cost of the commands, for load balancing
purposes” .

PX_SPECIFIED GPS_EXT - commands are sent to a set of rasterizers and
shaders specified by param?®.

param controls details of the distribution. For PX_ROUND ROBIN _EXT mode, it is
the blocking factor - param commands are sent to each rasterizer or shader before
shifting to the next. For PX_SPECIFIED GPS_EXT mode, it is the rasterizer to send
commands to. param is currently ignored for the other modes.

GL_INVALID ENUM is generated if {ype or mode are not one of the allowed values.
GL_INVALID VALUE is generated if param is less than 1 (for GL_ROUND ROBIN_EXT
mode) or an invalid rasterizer or shader ID (for GL_SPECIFIED GPS_EXT mode).

pxGetDistributionMode(GLenum type, GLenum *mode, GLint *param)

Returns the distribution mode and param used for the specified type of command.
This call may not be placed in a display list.

GL_INVALID_ENUM is generated if type is not one of the valid command types passed
to pxDistributionMode().

5Not implemented; may never be implemented

8Which commands are “textures”, exactly?

"How might this be parameterized?

8BEventually, param will specify a processor group ID, referring to an arbitrary set of processors established
with other pxgl calls. At present, it is just a rasterizer number, with rasterizers numbered starting at 0.

11

4 Extending the OpenGL Namespace

The C language binding of OpenGL [2] includes several namespaces: functions, types, and
enumerants. PxGL extends the function and enumerant namespaces and adds several new
namespaces: shader parameters, shader functions, light parameters, light functions, raster-
wzer parameters, rasterizer functions, and interpolators. Examples of these namespaces are
given.

In accordance with the ARB® guidelines for extensions to OpenGL, all additions to the
existing namespaces are postfixed by EXT for functions and _EXT for enumerants.

4.1 Functions

The function namespace refers to C calls made by an application, such as
glBegin() and glEnable(). About 20 new calls are introduced in PxGL, such as
glStart GeometryEXT() and glShaderEXT(). New calls are discussed in detail else-
where in this document.

4.2 Enumerants

The enumerant namespace refers to compile-time integral constants used to denote options,
values, flags, and other parameters to API functions. PxGL adds enumerants for the new
calls it introduces, such as GL_ALL_PRIMITIVES EXT (an allowed parameter to the function
glMaterialInterpEXT()). PxGL also allows some existing functions to accept additional
enumerant values in the context of extensions, such as passing an enumerant denoting a
user-defined sphere rasterizer to glBegin() (which normally accepts only enumerants corre-
sponding to the primitives defined in OpenGL). Finally, some existing functions will generate
or return new enumerant values, such as GL_UNSUPPORTED OPERATION_EXT (which may be
generated by calling functions in unsupported modes, and later returned by glGetError()).

4.3 New Namespaces

Application-defined code may be inserted at many stages of the graphics pipeline, primarily
for rasterization, surface shading, and lighting. To call this code and pass appropriate values
to it, several new namespaces are introduced corresponding to the various types of code and
parameters.

Because such code (with the exception of built-in functionality like triangle rasterizers
or the OpenGL shading model) is not known at compile time, a way to dynamically define
the namespaces is needed. This is accomplished by functions which map from ASCII string
names of code and parameters to numeric identifiers'® which are passed to PxGL calls'!.

The new namespaces and the sections in which their uses are discussed are

e Rasterizer functions and parameters, and parameter interpolators (§6).

20penGL Architecture Review Board.

10Should generated IDs be GLenum or GLuint? Adding enumerants at runtime is of questionable legality;
using integers causes incompatibilities with existing calls like glMaterial().

11Tt would be possible to pass names everywhere and avoid this mapping, at enormous performance cost.

12

Shader functions, instances, and parameters (§7).

Light functions, instances, and parameters (§8).
e Atmospheric functions and parameters (§9.1).

e Image manipulation functions and parameters (§9.2).

4.3.1 Names of OpenGL Objects

OpenGL parameters such as light and material properties are given string names (§15).
There are unique parameter IDs corresponding to the different parameters, such as am-
bient light color and ambient surface color. This differs from OpenGL, where the same
pname, such as GL_AMBIENT, may be used to refer to both light and material properties. For
backwards compatibility, the OpenGL IDs are accepted as aliases of the actual parameter
IDs.

Stuff to be done. ..

¢ Querying instance/global, interpolator, and default value for shader parameters
e Built-in shader function, shader parameters (also for rasterizers, lights, etc.)
e Specifying transformation of parameters (also for rasterizers, lights, etc.)

e Talk some more about the parameter namespaces and how they relate to OpenGL
pnames.

5 Loading Application-Defined Code

Adding application-defined code written in the PixelFlow shading language [5] to the PxGL
graphics pipeline is done at runtime!'?.

The application identifies such code using string names that symbolically refer to different
modules; the API hides details of how the names are mapped into object files which are
loaded into the hardware!®. For example, a light function using the Torrance-Sparrow
model might be named torrance; a sphere rasterizer function might be named sphere; and
a marble shader function might be named marble.

Application-defined code may be loaded using this call:

GLenum glloadExtensionCodeEXT(GLenum stage 14 const GLubyte *name)

12The mechanism used involves compiling code in the shading language into shared object files that are
loaded on demand.

13 Although we can expect that the name will either be a Unix filename component, or a key to look up a
filename.

14Do we want to load code for different stages with a single interface? We distinguish between stages with
glGetMaterialParameterNameEXT() and glGetRastParameterNameEXT () for example.

13

Loads application-defined code for the specified pipeline stage identified by name.
Returns an enumerated id which is passed to other calls controlling when the code
is to be used.

May be called with a built-in function or called again for application-defined code
that’s already been loaded. No action is taken, but the same valid id is returned.

stage may take on the following values:

GL_LIGHT FUNCTION EXT - load a light function. id is passed to

glNewLightEXT().

GL_RASTERIZER FUNCTION_EXT - load a rasterizer function. id is passed to
glBegin().

GL_SHADER FUNCTION EXT - load a shading function. id is passed to
glNewShaderEXT().

GL_ATMOSPHERIC FUNCTION EXT - load an atmospheric function. id 1is
passed to'®.

GL_WARPING FUNCTION_EXT - load an image warping function. id is passed
to'6.

GL_INVALID ENUM is generated if stage is not one of the allowed values, and 0 is
returned.

GL_INVALID VALUE is generated if name does not exist, and 0 is returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), and 0 is returned.

Code loaded with glLoadExtensionCodeEXT() usually has associated parameters;
rasterizers may also have associated interpolators. Loading code may have the side effect of
extending those namespaces. At present, there is a single namespace for parameters even
though they are accessed by different calls depending on the stage in which those parameters
are used. Thus, we require user-defined namespace scoping to distinguish both the stage
and the specific object within that stage which the parameter applies to; for example,
rast_sphere radius and shader_polkadot_radius”.

To map parameter names into identifiers, use the calls
glGetMaterialParameterNameEXT() or glGetRastParameterNameEXT().

6 Programmable Rasterization

The programmable rasterization model used in PxGL extends the glBegin() / glEnd()
mechanism used to define built-in primitive types such as triangles and lines. These new
terms are introduced:

15Yes, to what?
16 And again, to what?
17We should recommend namespace conventions.

14

Interpolator - A method for combining parameter values specified at one or more discrete
locations on a primitive being rasterized to generate values for that parameter at
all other locations on the primitive where it is not specified. The most common
interpolators are named constant (corresponding to flat shading on a primitive), flat
(corresponding to glShadeModel(GL FLAT), e.g. flat shading on individual polygons
within a primitive), and and linear (corresponding to glShadeModel (GL_SMOOTH),
e.g. Gouraud shading on polygons within a primitive). Other interpolator types may
be defined for user-specified rasterizer functions.

Since interpolation considered as a mathematical process is tightly bound to the geo-
metrical definition of a surface, most interpolators are only defined for specific types of
primitives. Interpolators have string names and corresponding enumerated parameter
IDs, referred to as interpname and interpid in code examples

Rasterizer Function - A function which takes as input a set of rasterizer parameters and
generates screen-space samples at which the function is visible. A rasterizer function
represents a type of geometric primitive; its parameters determine a specific instance
of that geometry. In abstract terms, the function creates geometry, transforms it
according to the current model-view and projection matrices, and samples it. At
visible samples, shader parameters defined for the current shader are computed using
a specified parameter interpolator and copied into the sample buffer.

Rasterizer Parameter - A parameter to a rasterizer function. Some examples include
vertices of polygons, sphere radii, or control points of parametric patches.

Sequence Point - Specifies the binding time for a group of rasterizer and shader parame-
ters. A rasterizer function may require one or more sequence points to define a specific
instance of its geometry. In many cases, including all the OpenGL primitive types, the
rasterizer parameters bound at the sequence point will simply be vertices of a surface.
Other examples include center and radii of spheres, twist vectors of Hermite patches,

or coefficients of general quadric surfaces'S.

6.1 Loading and Using Rasterizer Functions
To use an application-defined rasterizer function, the following steps must be taken:
e Load the rasterizer function and obtain its ID with glLoad ExtensionCodeEXT()

e Obtain parameter 1Ds of rasterizer parameters using
glGetRastParameterNameEXT().

e Call glBegin() with the rasterizer ID to start delimiting sequence points of a rasterizer
function.

e Specify rasterizer parameters using glRastParamEXT() and bind them using
glSequencePointEXT().

18 Rasterizer writers will have to document which parameters are per-block and which are per-sequence-
point.

15

e Call glEnd() to finish delimiting sequence points of the function and call the rasterizer
function.

6.1.1 Example

In the following example, a rasterizer function named spheres is loaded. The function
has two parameters, the center and radius of the sphere; each sequence point defines a
separate sphere. Two unit-radius spheres which touch at the origin and are centered at

(1,0,0) and (-1,0,0) are drawn.

// Load the rasterizer and obtain its ID
GLenum spherefuncid =
glLoadExtensionCodeEXT(GL_RASTERIZER_FUNCTION_EXT, "spheres");

// Obtain IDs for named parameters
GLenum centerid = glGetRastParameterNameParameterEXT("rast_sphere_center");
GLenum radiusid = glGetRastParameterNameParameterEXT("rast_sphere_radius");

glBeginFrameEXT();
glStartGeometryEXT();

GLfloat vertminus[3] = { -1, 0, 0 };
GLfloat vertplus[3] = { 1, 0, 0 };

// Draw the two spheres

glRastParamfEXT(radiusid, 1.0);

glBegin(spherefuncid);
glRastParamfvEXT(centerid, &vertminus);
glSequencePointEXT();

glRastParamfvEXT(centerid, &vertplus);
glSequencePointEXT();
glEnd();

Example - Using rasterizer functions

6.2 Rasterizer API Definitions

There is currently an naming inconsistency where some calls use RastParam and others
use RastParameter. This should be resolved, probably in favor of the latter.

void glGetRastParamEXT(GLenum paramid, TYPE *params)

Returns the value of the specified parameter in params.

GL_INVALID ENUM is generated if paramid is not a valid rasterizer parameter.

16

GLenum glGetRastParameterNameEXT(GLchar *name_string)

Returns the parameter ID corresponding to the string name.

GL_INVALID NAME_STRING_EXT is generated if string is not a parameter of any ras-
terizer, and 0 is returned.

GLchar * glGetRastParameterStringEXT(GLenum pname)

Returns the string name corresponding to the specified parameter 1D.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and NULL is
returned.

void glSequencePointEXT()

Binds parameters of the rasterizer and shader functions in use.

GL_INVALID OPERATION is generated when glSequencePointEXT() is called other
than between glBegin() and glEnd().

void glRastParamEXT(GLenum paramid, TYPE params)

glRastParam assigns values to rasterizer parameters. paramid specifies which
parameter will be modified. params specifies what value or values will be assigned
to the parameter.

GL_INVALID VALUE is generated if param:d is not a defined rasterizer parameter 1D.

6.3 glVertex() and Sequence Points

Vertices defining built-in primitive types are rasterizer parameters. The following two code
sequences have identical effects:

glVertex3f(x,y,z);

Defining a vertex using glVertex()

GLenum vertid = glGetRastParameterNameEXT('"gl_vertex");
GLfloat point[4] = { x, y, z, 1.0 };

glRastParamfvEXT(vertid, &point);
glSequencePointEXT();

Defining a vertex using rasterizer extensions

6.4 Vertex Array Extensions for Rasterizers and Shaders

These will be needed, but can’t be finalized until the GL 1.1 specification is out.

17

6.5 Interpolators

Every rasterizer function has one or more interpolators associated with its geometry, which
take shader parameters specified at control points and generate parameter values at all
samples. All rasterizers may use the constant interpolator, which copies a single value into
all samples. Rasterizers defined by OpenGL all support the flat interpolator, which copies
a separate constant value into each successive primitive (triangle, line segment, quadrilat-
eral, etc.) in a group, and the linear interpolator, which fits a linear function (possibly
perspective-corrected) to the first two or three vertices of a primitive.

There is also an implicit interpolator, which ignores parameter values specified at se-
quence points. Its exact function varies depending on the rasterizer and parameter type.
For built-in rasterizers, the implicit interpolator can only be applied to texture coordinates,
implementing the functionality of glTexGen().

Other types of rasterizers may use these interpolators, if they make sense, or define new
interpolators corresponding to their geometry!'®. For example, a triangle with 3 additional
sequence points at the midpoints of its edges might define a quadratic interpolator, to al-
low smoother shading between triangles. A parametric patch might define an interpolator
which applies the same weights to shader parameters as to control points. A sphere or gen-
eral quadric surface rasterizer might interpret the tmplicit interpolator to generate texture
coordinates and normals based on the intrinsic geometry of the surface.

6.6 Interpolator API Definitions

void glGetMaterialInterpEXT(GLenum paramid, GLenum primtype, GLenum
*xinterpid)

Returns the interpolator used for rasterizing the specified shader parameter for the
specified primitive type.

GL_INVALID_ENUM is generated if paramid is not a valid shader parameter or if prim-
type 1s not a valid primitive type.

void glMaterialInterpEXT(GLenum paramid, GLenum primtype, GLenum interpid)

Sets the interpolator to be used for rasterizing the specified shader parameter for
the specified primitive type. A primitive type is required because most interpolators
are defined only for specific types of geometry.

interpid 1s usually an interpolator ID for a specific primitive. Five interpolators are
built-into PxGL:

GL_IMPLICIT_INTERPOLATOR_EXT is implemented for texture coordinates in built-in
rasterizers, according to the glTexGen() parameters?’. When rasterizing user de-
fined primitives, it is intended to allow generating normals and texture coordinates
based on the intrinsic geometry of the object.

GL_CONSTANT _INTERPOLATOR EXT copies the parameter value current when

19We don’t have a way to get IDs for interpolators loaded as part of rasterizers, yet - something like a
glGetInterpolatorNameEXT() call is needed.
20D we want to implement it for surface normals, too?

18

glBegin() is called into all samples rasterized for that primitive or group of prim-
itives. It is guaranteed to be implemented for all primitive types and all parameter

types.

GL_FLAT_INTERPOLATOR EXT copies the parameter value current when the last vertex
or sequence point defining a primitive is called into all samples rasterized for that
primitive. Unlike the constant interpolator, a group of primitives defined in a
glBegin() / glEnd() block may have a different value specified for each primitive.
This corresponds to glShadeModelEXT (GLFLAT).

GL_LINEAR_INTERPOLATOR EXT is implemented for all built-in primitive types and
parameters, and corresponds to glShadeModel (GL_SMOOTH)?!.

GL_DEFAULT_INTERPOLATOR EXT is a way to specify the most “natural” type of in-
terpolator for a primitive; linear for a polygon, implicit for a sphere, bicubic for a
patch, and so on.

primtype is either a valid primitive type or the special value
GL_ALL PRIMITIVES EXT. In the latter case, only GL_CONSTANT INTERPOLATOR EXT,
GL_FLAT_INTERPOLATOR EXT, or GL_DEFAULT_INTERPOLATOR_EXT may be specified.

GL_INVALID ENUM is generated if paramidis not a valid shader parameter, if primtype
is neither a valid primitive type nor GL_ALL_PRIMITIVES EXT, or if interpid is not a
valid interpolator.

GL_INVALID OPERATION is generated if interpid is not defined for the specified
paramid and primtype.

To be added: glGenDataEXT() and glDeleteDataEXT().

7 Programmable Shading

The programmable shading model used in PxGL is based on the RenderMan [4] shading
language, but use of some terms differ and these new terms are introduced:

Shader Function - A function, either built-in to PxGL or loaded at runtime, which takes
as input a set of shader parameters and generates as output a color. A shader function
is conceptually applied to each sample of a primitive which was rasterized with a cor-

responding shader applied??. Shader functions have string names and corresponding

enumerated IDs, referred to as shaderfunc and shaderfuncid in code examples.

Shader - An instance of a shader function which binds a subset of the function’s parameters
to be nonvarying for all samples to which the shader is applied. This is done primarily
to increase rasterization and shading speed and to reduce traffic on the PixelFlow
image composition network. Shaders have enumerated IDs, referred to as shaderid
in code examples.

2INote that in PxGL, interpolation is applied to shading parameters before lighting, rather than to color
after lighting, as in OpenGL. This allows true Phong shading, avoiding the artifacts caused by OpenGL’s
Gouraud interpolation of Phong-lit vertices.

22Deferred shading means that in practice, only samples which affect visibility are actually shaded.

19

Shader Parameter - An input argument to a shader function. These fall into three types
depending on how they arrive at the shading hardware: wuniform, nonvarying, and
varying parameters. Shader parameters have string names and corresponding enu-
merated IDs, referred to as paramname and paramid?? in code examples.

Nonvarying Parameter - A shader parameter whose value is the same for all sam-
ples rasterized using that shader. A non-uniform parameter of a shader function

may be chosen to be either nonvarying or warying on a per-shader basis using
glMaterial VaryingEXT().

Uniform Parameter - A shader parameter whose value is the same for all samples ras-
terized using that shader. Uniform parameters cannot be made varying®*.

Varying Parameter - A shader parameter whose value may be different in each sample
rasterized using that shader.

7.1 Creating Shaders

To create a shader, the following steps must be taken:

e Load a shader function and obtain its ID with glLoadExtensionCodeEXT().

Create the new shader and obtain a shader ID using glNewShaderEXT().

Obtain parameter IDs of shader parameters using
glGetMaterialParameterNameEXT().

Specify which shader parameters are varying using glMaterialVaryingEXT() (all
parameters not otherwise specified are assumed to be uniform).

¢ Instantiate the shader with glEndShaderEXT().

After creating the shader, nonvarying parameter values may be set using
glSurfaceEXT(). These parameter values can be changed at any time before start of
geometry.

7.1.1 Example

This code fragment loads a hypothetical shader function named phong shader. The
shader function has two parameters, named gl shader_color (intrinsic color) and

230penGL uses pname to refer to material parameters such as emission color, which are shader parameters
of the builtin OpenGL shading model. This discrepancy should be resolved; Rich suggests an explanation
of parameter names vs. parameter IDs.

24The distinction between uniform parameters and nonvarying parameters is subtle from the user’s point
of view, and these definitions need work: both are sent to the shader GPs over the geometry network, but
uniform parameters are held on the GP during shading code execution, while nonvarying parameters are
copied into pixel memory. The distinction is primarily an efficiency measure to reduce composition network
bandwidth requirements.

20

gl _shader normal (surface normal)?®. Two shaders are created. The first, phongshader,
allows both color and normal to vary. The second, redshader, has a nonvarying intrinsic

color of red.

// Load the named shader and obtain its ID
GLenum phongfuncid =
glLoadExtensionCodeEXT (GL_SHADER_FUNCTION_EXT, 'phong_shader");

// Obtain IDs for named parameters
GLenum colorid = glGetMaterialParameterNameEXT("gl_shader_color");
Glenum normalid = glGetMaterialParameterNameEXT("gl_shader_normal");

// Create a shader with ID ’phongshader’, allowing both parameters to vary

GLenum phongshader = glNewShaderEXT(phongfuncid);
glMaterialVaryingEXT(phongshader, colorid);
glMaterialVaryingEXT(phongshader, normalid);

glEndShaderEXT();

// Create ’redshader’, allowing only normals to vary and

// binding the nonvarying color to red.

GLfloat red[3] = { 1, 0, 0 };

GLenum redshader = glNewShaderEXT(phongfuncid);
glMaterialVaryingEXT(redshader, normalid);

glEndShaderEXT();

glSurfacefvEXT(redshader, colorid, &red);

Example - Creating shaders

7.2 Using Shaders
To use a shader once it has been created, the following steps must be taken:
o Select the shader using glShaderEXT().

e Specify the interpolation method to be used for warying shader parameters using
glMaterialInterpEXT().

e Define a primitive, setting values of varying shader parameters using glMaterial().

7.2.1 Example

This continues the previous example, defining three triangles. The first uses redshader
to draw a red phong-lit triangle with linearly interpolated normals. The second uses
phongshader to draw a vertex-colored triangle using linear interpolation of the vertex colors.
The third uses phongshader to draw a green triangle using constant interpolation.

25Note that these parameters are also parameters of the built-in OpenGL shader; they are used by the
loadable shader so the example can make shortcut calls like gINormal() and glColor() to specify shader
parameters, rather than glMaterial().

21

// Select the red-colored shader
glShaderEXT(GL_FRONT_AND_BACK, redshader);

// Choose a linear interpolator for normals and draw a red
// phong-shaded triangle.
glMaterialInterpEXT(normalid, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);

glBegin(GL_TRIANGLES) ;
for (i = 0; i < 3; i++) {
glNormal3fv(normal[il);
glVertex3fv(vertex[i]);
}
glEnd();

// Select the phong shader, use linear interpolation for color,
// and draw a vertex-colored phong-shaded triangle
glShaderEXT(GL_FRONT_AND_BACK, phongshader);

glMaterialInterpEXT(colorid, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);

glBegin(GL_TRIANGLES) ;
for (i = 0; i < 3; i++) {
glColor3fv(color[il);
glNormal3fv(normall[il);
glVertex3fv(vertex[i]);
}
glEnd();

// Change to constant interpolation for color, and draw a green
// phong-shaded triangle.
glMaterialInterpEXT(colorid, GL_TRIANGLES, GL_CONSTANT_INTERPOLATOR_EXT);

GLfloat green[3] = { 0, 1, 0 };
glColor3fv(green);

glBegin(GL_TRIANGLES) ;
for (1 = 0; i < 3; i++) {
glNormal3fv(normal[il);
glVertex3fv(vertex[i]);
}
glEnd();

Example - Using shaders

There is a subtle difference between the first and third triangles: the first uses a shader
where color is nonvarying, so that all primitives rendered using that shader will be red. The
third triangle uses a shader where color is varying, but the constant interpolator causes the

22

color to be fixed on that particular triangle?®.

7.3 Shading API Definitions

void glDeleteShaderEXT(GLuint shaderid)

Removes the definition of the specified shader; shaderid is unused after this call.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

void glEndShaderEXT()

Instantiates a shader created by glNewShaderEXT(). All shader parameters
which are not explicitly specified in previous calls to glMaterialVaryingEXT()
are made nonvarying; values of these parameters are set with glSurfaceEXT().

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), or when not preceded by a corresponding
glNewShaderEXT().

void glGet(GLenum pname, TYPE *params)

glGet() is extended to accept parameters GL_FRONT_SHADER EXT and
GL_BACK_SHADER _EXT, which return the current front and back face shaders
as specified via glShaderEXT().

void glGetMaterial(GLenum face, GLenum paramid, TYPE *params)

glGetMaterial() is extended so that paramid can refer to shader parameters de-
fined by dynamically loaded shaders.

GL_INVALID_ENUM is generated if paramid is not a valid shader parameter.
GLenum glGetMaterialParameterNameEXT(GLchar *name_string)

Returns the parameter ID corresponding to the string name_string.
GL_INVALID NAME_STRING_EXT is generated if name_string is not a parameter of any
shader, and 0 is returned.

void glGetMaterialParametersEXT(GLuint shaderid, GLenum *pnames)

Returns a list of parameter IDs wused by the specified shader.
pnames must have room for at least the number of IDs specified by
glGetNumMaterialParametersEXT().

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

26 The purpose of the constant interpolator is to reduce work done during rasterization; it’s appropriate
when performing (for example) flat shading. The same visual effect could also be achieved by using the
linear interpolator and specifying the same color at each vertex, but rasterization speed would be lower.

23

GLchar * glGetMaterialParameterStringEXT(GLenum pname)

GLuint

Returns the string name corresponding to the specified parameter 1D.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and NULL is
returned.

glGetNumMaterialParametersEXT(GLuint shaderid)

Returns the number of material parameters accepted by the specified shader. Used
in conjunction with glGetMaterialParametersEXT().

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

void glGetSurfaceEXT(GLuint shaderid, GLenum face, GLenum paramid, TYPE
*params)

Retrieves the value of a nonvarying parameter of the specified shader. Bound values
are set by glSurfaceEXT().

GL_INVALID ENUM is generated if face is not GL_FRONT or GL_BACK, or if param:d is
not a bound parameter of shaderid.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GLboolean glIsMaterialParameterEXT(GLuint shaderid, GLenum pname)

Returns TRUE if pname is a parameter of the specified shader, FALSE otherwise.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID, and FALSE is

returned.

GL_INVALID ENUM is generated if pname is not a valid parameter 1D, and FALSE is
returned.

GLboolean glIsMaterialUniformEXT(GLuint shaderid, GLenum pname)

Returns TRUE if pname is a uniform parameter of the specified shader, FALSE oth-
erwise.

GL_INVALID VALUE is generated if shaderid is not a defined shader 1D, and FALSE is
returned.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and FALSE is
returned.

GLboolean glIsShaderEXT(GLuint shaderid)

Returns TRUE if shaderid is used for an existing shader, FALSE otherwise.

void glMaterial(GLenum face, GLenum paramid, TYPE params)

glMaterial() is extended so that paramid can refer to shader parameters defined
by dynamically loaded shader functions.

GL_INVALID ENUM is generated if paramid is not a shader parameter either of the
built-in OpenGL shading function or of a shader function previously loaded.

24

void glMaterialVaryingEXT(GLuint shaderid, GLenum paramid)

GLuint

Specifies that a parameter is varying for this shader. All parameters of a shader are
uniform or nonvarying unless specified as varying by the time glEndShaderEXT ()
is called?7.

GL_INVALID_ENUM is generated if param:d is not a valid shader parameter or a uni-
form parameter.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GL_INVALID OPERATION is generated if called other than between
glNewShaderEXT() and glEndShaderEXT().

glNewShaderEXT(GLenum shaderfuncid)

Creates and returns a shader ID for a new instance of the specified shader function.

GL_INVALID_ENUM is generated if shaderfuncid does not refer to a valid shader func-
tion, and 0 is returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), and 0 is returned.

void glShaderEXT(GLenum face, GLuint shaderid)

Sets the shader to be used for shading the specified face of primitives defined fol-
lowing the call. face may be GL_FRONT, GL_BACK, or GL_FRONT_AND BACK.

GL_INVALID_ENUM is generated if face is not one of the allowed values.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

void glSurfaceEXT(GLunit shaderid, GLenum paramid, TYPE params)

Sets the value of nmonvarying parameters of a shader instance. The values of
varying parameters are set with glMaterial().

Nonvarying parameters cannot be specified separately for front and back faces; there
is a single value used regardless of whether the front or back face of a primitive is
rasterized. This can be addressed by using different shaders on front and back faces.

A nonvarying parameter has an initial value defined by the shader using that pa-
rameter. The value is set when the shader is loaded.

GL_INVALID_ENUM is generated if paramid does not refer to a nonvarying parameter
of the specified shader.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

2TWhile shaderid appears redundant, keeping the parameter allows the possibility of changing a parameter
between varying and nonvarying on the fly, in a possible future implementation.

25

7.4 To Be Done

e Parameter Transformation (normals, texture matrix).

e Parameter Generation (glTexCoord(), sphere normals).

Implicit Parameters (texture scale factors, texture 1D, normals).

e GL _FRONT_AND BACK vs. uniform parameters and optimized lists.

8 Programmable Lighting
The programmable lighting model used in PxGL introduces these new terms:

Light Function - A function which takes as input a set of light source parameters and a
set of shader parameters at a sample, and generates an illumination at that sample
which is used by a shader function to compute color of the sample.

Light Group - A subset of all existing light instances, used to illuminate specified primi-

tives during shading. Only one light group may be active at any time.

8.1 Creating Lights

To create a light, the following steps must be taken:
e Load a light function and obtain its ID with glLoadExtensionCodeEXT()
e Create the new light and obtain a light ID using glNewLight EXT().

e Obtain parameter IDs of light source parameters using
glGetLightParameterName?EXT().

e Call glLight() to specify light source parameters.

8.1.1 Example

I don’t have a good example of a user-defined light function. This example just creates a
new instance of the built-in OpenGL light function, which is named gl light _function.
The light is made a red, diffuse, infinite light in direction -Z.

glBeginFrameEXT();

// Get the light function ID for the built-in light model
// by "loading" it.
GLenum lightfuncid =
glLoadExtensionCodeEXT(GL_LIGHT_FUNCTION_EXT, "gl_light_function");

// Create a new instance of the OpenGL light function

28 This call needs to be added.

26

GLenum lightid = glNewLightEXT(lightfuncid);

// Get IDs of light source parameters. We do not really

// need to do this for the built-in light function; GL_POSITION

// and GL_DIFFUSE could be used instead.

GLenum positionid = glGetLightParameterNameEXT("gl_light_position");
GLenum diffuseid = glGetLightParameterNameEXT("gl_light_direction");

0.0, -1.0, 0.0 };

GLfloat position[4] = { 0.0,
=4{1.0, 0.0, 0.0, 1.0 };

GLfloat diffusecolor[4]
glLightfv(lightid, positionid, &position);
glLightfv(lightid, diffuseid, &diffusecolor);

Example - Creating a light

8.2 Using Lights

There is no limit on the number of lights which may be created (above and beyond the
built-in OpenGL lights). Lights are placed in light groups, which are arbitrary subsets of
the defined lights with enumerated IDs; the current light group may be changed at any time
and that set of lights is applied when shading primitives. Initially a single light group,
GL_DEFAULT LIGHT _GROUP _EXT, exists and is the current light group.

To change the lighting environment, the following steps must be taken:

e Optionally create a new light group.

e Place desired lights in the light group.

e Specify the current light group.

e Render primitives with the specified light group illuminating them.

8.2.1 Example

This continues the previous example, placing the new light in a new light group, selecting
that as the current light group, and drawing a triangle.

// Create a new light group
GLuint groupid = glNewLightGroupEXT();

// Add the new light to this group
glEnableLightGroupEXT(groupid, lightid);

glStartGeometryEXT();
glLightGroupEXT(groupid);

// Primitives drawn now are lit by the new light

27

8.3

void

void

void

void

void

void

void

void

Example - Using a light

Light API Definitions

glDeleteLightEXT(GLenum lightid)

Removes the definition of the specified light; lightid is unused after this call.
GL_INVALID_VALUE is generated if lightid is not a defined shader 1D.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

glDeleteLightGroupEXT(GLuint groupid)

Removes the definition of the specified light group; groupid is unused after this call.
GL_INVALID_VALUE is generated if groupid is not a defined light group.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

glDisable(GLenum cap)

glEnable(GLenum cap)
glDisable() and glEnable() are extended to operate on light groups. When cap
is GL_LIGHT %, the specified built-in light is removed from or added to the current
light group?®.

glDisableLightGroupEXT(GLuint groupid, GLenum lightid)

glEnableLightGroupEXT(GLuint groupid, GLenum lightid)

Removes or adds the specified light to the specified light group.

GL_INVALID VALUE is generated if groupid is not a valid light group ID or lightid is
not a valid light ID.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().
glGet (GLenum pname, TYPE *params)

glGet() is extended to accept parameter GL_LIGHT_GROUP_EXT, which returns the
current light group as specified via glLightGroupEXT().

glGetLight (GLenum lightid, GLenum paramid, TYPE *param)

glGetLight() is extended so that paramid can refer to light source parameters
defined by dynamically loaded light functions.

GL_INVALID ENUM is generated if lightid is not a valid light or if paramid is not a
light source parameter of the light

29GL_LIGHTING could be implemented as a flag on the entire light group; at present it has no effect.

28

void glGetLightFunctionEXT(GLenum lightid, GLenum *lightfuncid)

Returns in lightfuncid the light function used by the specified light.
GL_INVALID_ENUM is generated if lightid is not a valid light.

GLboolean glIsLightEXT(GLenum lightid)

Returns TRUE if lightid is used for an existing light, FALSE otherwise.
GLboolean glIsLightGroupEXT(GLuint groupid)

Returns TRUE if groupid is used for an existing light group, FALSE otherwise.

void glLight(GLenum lightid, GLenum paramid, TYPE param)

glLight() is extended so that paramid can refer to light source parameters defined

by dynamically loaded light functions.

GL_INVALID_ENUM is generated if paramid is not a light source parameter either of

the built-in OpenGL light function or of a light function previously loaded.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT().

void glLightGroupEXT(GLuint groupid)

Sets the light group to be used for lighting primitives specified following the call.

GL_INVALID VALUE is generated if groupid is not a defined light group ID.

void glLightModelEXT(GLenum pname, TYPE param)

glLightModel() is extended so that when two-sided lighting is enabled via
GL_LIGHT MODEL _TWO_SIDE, it includes all varying parameters of the shader being
used for a primitive. This allows texture coordinates, texture IDs, and user-defined

shader parameters to differ on front and back faces of a primitive.

GLenum glNewLightEXT(GLenum lightfuncid)

Creates and returns a light ID for a new instance of the specified light function.

GL_INVALID_ENUM is generated if lightfuncid does not refer to a valid light function,

and 0 1s returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT(), and 0 is returned.

GLuint glNewLightGroupEXT()

Creates a new light group and returns the group ID. Initially no lights are in the

group; lights may be added with glEnableLight GroupEXT().

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT().

29

9 Programming Other Pipeline Stages - to be written

9.1 Atmospheric
Talk about glFog() here.

9.2 Warping
To be defined.

10 Transparency and Other Blending Effects

Because PixelFlow is an image composition architecture, in which there is not a single frame
buffer during rasterization, the effects possible via blending in OpenGL must be done via
alternate methods.

Further discussion about blending across frame boundaries and such will go here later.

10.1 Transparency

Transparent primitives may be handled in one of two ways. The first is screen-door trans-
parency. This supports a limited number of levels of transparency, depending on the number
of samples/pixel being rasterized, but is the most general method. The second method is a
multipass algorithm which extracts all transparent primitives and renders them properly in
sorted order using multiple rendering passes to resolve visibility (Apgar paper citation goes
here). Unlike alpha blending in OpenGL, neither approach relies on the database being
traversed in any particular order.
To use transparent primitives, several steps must be taken:

e Enable transparency on a per-frame basis using glTransparencyEXT().
e Enable transparency on a per-primitive basis using glEnable().

e Specify transparent primitives by defining colors with non-unitary alpha components.
The new calls are:

void glTransparencyEXT(GLenum mode)
Specifies the method by which transparent primitives are rendered. Must be called
during the frame setup stage (section 2.1).

mode may take on the following values:

GL_TRANSPARENCY NONE_EXT - transparency is not handled. All primitives
are treated as opaque regardless of alpha values.

GL_TRANSPARENCY SCREEN DOOR_EXT - transparency is done by turning on
a fraction of the samples in each pixel corresponding to the alpha value of

30

that fragment. This is usually the fastest and lowest quality mode.

GL_TRANSPARENCY MULTIPASS EXT - transparency is done by multipass ren-
dering of potentially transparent primitives. This is usually the slowest and
highest quality mode.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

void glDisable(GLenum cap)

void glEnable(GLenum cap)

glDisable() and glEnable() are extended to support potentially transparent prim-
itives. When cap is GL_TRANSPARENCY EXT and is enabled, primitives may be han-
dled using the transparency mode determined by glTransparencyEXT(). When
disabled, primitives are treated as opaque regardless of their alpha values.

For maximum performance, GL_TRANSPARENCY EXT should be enabled only when
potentially transparent primitives are being rasterized.

10.1.1 Determining Transparency

Determining whether or not primitives are transparent at rasterization time is difficult in a
deferred-shading architecture, since user-defined shaders need not have an input parameter
analogous to the alpha value used by OpenGL. At present, transparency is only handled for
primitives using the built-in OpenGL shader®C.

11 Display List Optimization - to be written
e How to specify optimization; types of optimizations.

e Inheriting state from environment for constant-interpolated params, binding at
glBegin().

o Interaction with glShadeModelEXT().

12 Multiple Application Threads - to be written

Discuss multiple AP contexts, ordering issues, frame synchronization points, global names-
paces for lights, shaders, and rasterizers, local (perhaps) namespaces for display lists.

13 OpenGL Variances - to be written

Tables of (enumerant,relevant calls) and (call,valid frame stages) will go here.

3015 this true? We've gone around on possible approaches to shaders generating transparent samples
before, but there has been no resolution yet. What does the current implementation do?

31

Depth buffer always enabled.

Depth function always GL_LESS.

e Transparency specially handled (see section 10.1).

And lots more. ..

14 Unsupported OpenGL Features - to be written

Lee’s lengthy document should be referenced here.

15 Function, Enumerant, and Name Tables

Parameters of the built-in light, shader, and rasterizer functions have all been assigned string
names which map to enumerated IDs. Existing OpenGL enumerants (such as GL_AMBIENT or
GL_LIGHTO) are recognized as aliases for the actual IDs. String names of built-in parameters,

and the corresponding OpenGL enumerants, are listed below.

15.1 Light Function and Parameter Names

There is a single built-in light function corresponding to the OpenGL lighting model, named
gl light function. Table 1 lists parameters of this function, which correspond to OpenGL

light source parameters.

gl light spot_direction

gl light spot_exponent

gl light spot_cutoff

gl light_constant_attenuation
gl light linear_attenuation

gl light_quadratic_attenuation

String Name OpenGL ID
gl light_ambient GL_AMBIENT
gl light diffuse GL_DIFFUSE
gllight _specular GL_SPECULAR
gl light_position

GL_POSITION

GL_SPOT DIRECTION
GL_SPOT_EXPONENT
GL_SPOT_CUTOFF
GL_CONSTANT _ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

Table 1: Built-in light source parameter names

32

15.2 Rasterizer Function and Parameter Names

Table 2 lists the built-in rasterizer function names and the corresponding OpenGL IDs.

String Name OpenGL ID
1 teri int
gl rasterizer points GL_POINTS
gl rasterizer_ lines 6L LINES
gl rasterizer line_strip

GL_LINE_STRIP
gl rasterizer_line_loop

GL_LINE_LOOP

gl rasterizer triangles GL TRIANGLES

gl rasterizer triangle strip GL TRIANGLE.STRIP

gl rasterizer triangle fan GL_TRIANGLE FAN

1 teri d
gl rasterizer _quads GL_QUADS

1 teri d_stri
gl _rasterizer quad_strip GL_QUAD_STRIP

gl rasterizer polygon GL_POLYGON

Table 2: Built-in rasterizer functions

There is a single parameter of built-in rasterizers, named gl_vertex. Vertices are nor-
mally specified using glVertex() rather than glRastParamEXT() (§6.3).

15.3 Shader Function and Parameter Names

There is a single built-in shader function corresponding to the OpenGL shading model,
called gl_shader function. Table 3 lists parameters of this function and the corresponding
OpenGL material parameter names.

15.4 Atmospheric Function and Parameter Names

There is a single built-in atmospheric function corresponding to the OpenGL fog model,
called gl fog function. Table 4 lists parameters of this function and the corresponding
OpenGL fog parameter names.

15.5 Interpolator Names

Table 5 lists the built-in interpolator functions which may be used with the built-in rasterizer
functions. The constant and implicit interpolators may also be used with any application-
defined rasterizer function.

33

String Name OpenGL ID
glshader_ambient GL_AMBIENT
glshader diffuse GL_DIFFUSE

gl_shader_color
gl_shader_specular

gl _shader_emission
gl _shader_shininess

gl _shader_textureid
gl_shader normal

gl_shader_u, gl shader_v
gl_shader_du, gl shader_dv

Use glColor()
GL_SPECULAR
GL_EMISSION

GL_SHININESS

Use texture object calls
Use glNormal()

Use glTexCoord()
Implicitly generated

Table 3: Built-in material parameters

String Name OpenGL ID
glfog-mode GL_FOG_MODE
glfog_density GL_FOG_DENSITY
gl fog start GL_FOG_START
gl fog_end

GL_FOG_END

gl _fog_color

GL_FOG_COLOR

Table 4: Built-in atmospheric parameters

String Name

OpenGL ID

gl interpolator_implicit

gl interpolator_constant

gl _interpolator flat

gl interpolator_linear

gl _interpolator_default

GL_IMPLICIT_INTERPOLATOR_EXT
GL_CONSTANT_INTERPOLATOR_EXT
GL_FLAT_INTERPOLATOR_EXT
GL_LINEAR_INTERPOLATOR_EXT
GL_ DEFAULT_INTERPOLATOR_EXT

Table 5: Built-in interpolator names

34

15.6 Defined Constants

Table 6 lists manifest constants in PxGL which are not in OpenGL, along with the corre-
sponding commands these constants are used in.

Constant Associated Commands
GL_BACK_SHADER EXT, glGet()
GL_FRONT _SHADER _EXT,

GL_LIGHT _GROUP_EXT

GL DEFAULT LIGHT _GROUP_EXT glLight GroupEXT()

GL_CONSTANT_INTERPOLATOR EXT, glMateriallnterpEXT()
GL_DEFAULT_INTERPOLATOR_EXT,

GL_FLAT_INTERPOLATOR EXT,

GL_IMPLICIT_INTERPOLATOR EXT,
GL_LINEAR_INTERPOLATOR EXT

GL_ATMOSPHERIC FUNCTIONEXT, glLoadExtensionCodeEXT()
GL_LIGHT FUNCTION_EXT,

GL_RASTERIZER FUNCTION_EXT,

GL_SHADER FUNCTION_EXT,

GL_WARPING_FUNCTION_EXT

GL_TRANSPARENCY EXT glEnable()

GL_TRANSPARENCY NONE_EXT, glTransparencyEXT()
GL_TRANSPARENCY _SCREEN_DOOR_EXT,
GL_TRANSPARENCY MULTIPASS_EXT

many

GL_UNSUPPORTED_OPERATION_EXT

Table 6: Defined constants

16 Glossary

Interpolator - A method for combining parameter values specified at one or more
discrete locations on a primitive being rasterized to generate values for that param-
eter at all other locations on the primitive where 1t 1s not specified.

Light Function - A function which takes as input a set of light source parameters
and a set of shader parameters at a sample, and generates an illumination at that
sample which is used by a shader function to compute color of the sample.

Light Group - A subset of all existing light instances, used to illuminate specified
primitives during shading. Only one light group may be active at any time.

Nonvarying Parameter - A shader parameter whose value is the same for all
samples rasterized using that shader.

Rasterizer Function - A function which takes as input a set of rasterizer param-
eters and generates screen-space samples at which the function is visible.

Rasterizer Parameter - A parameter to a rasterizer function.

Sequence Point - Specifies the binding time for a group of rasterizer and shader
parameters.

Shader Function - A function, either built-in to PxGL or loaded at runtime, which
takes as input a set of shader parameters and generates as output a color.

Shader Parameter - An input argument to a shader function.

Shader - An instance of a shader function which binds a subset of the function’s
parameters to be nonvarying for all samples to which the shader is applied.

Uniform Parameter - A shader parameter whose value is the same for all samples
rasterized using that shader.

Varying Parameter - A shader parameter whose value may be different in each
sample rasterized using that shader.

Rasterizer Boards - Hybrid MIMD/SIMD parallel processors which transform
subsets of the primitives making up an image, rasterizing shader parameters into
local sample buffers These buffers are later combined using the image composition
network as directed by the rendering recipe.

Rendering Recipe - A list of instructions describing how to combine rasterized
screen regions containing shading parameters using the image composition network,
shade the resulting visible samples, and combine shaded samples into the frame
buffer. The rendering recipe is normally defined by state such as viewport size and
number of supersamples used for antialiasing.

Sample Buffer - buffers on rasterizer boards which contain samples of locally-
visible surfaces and shading parameters for those samples.

17 Credits

The PixelFlow API has developed by discussion among the following people®!:

Dan Aliaga, Jon Cohen, Lawrence Kestleoot, Anselmo Lastra, Jon Leech, Jonathan
McAllister, Steve Molnar, Marc Olano, Greg Pruett, Yulan Wang, and Rob Wheeler (UNC),
and Rich Holloway, Roman Kuchkuda, and Lee Westover (HP)

317 think this covers everyone who had significant input, but please correct me - JPL.

36

References

[1] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 1.1). Silicon Graphics, Inc., 1995. Unpublished; available at UNC in
file:/home/pxfl/doc/software/SGI/glspec.ps

[2] OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-Wesley Pub-
lishing Company, Inc., 1992.

[3] Steve Molnar, John Eyles, and John Poulton. PizelFlow: High-Speed Rendering Using
Image Composition. Computer Graphics vol. 26 no. 2, July 1992.

[4] Steve Upstill. The RenderMan Companion: A Programmer’s Guide to Realistic Com-
puter Graphics. Addison-Wesley Publishing Company, Inc., 1990.

[5] Marc Olano. PizelFlow Shading Language. Unpublished; talk to Marc for a copy.

37

Index

atmospheric effects 30
atmospheric function names 33
atmospheric parameter names 33
blending effects 30

changelog 6

code example - creating lights 26
code example - creating shaders 20
code example - frame generation 9
code example - using lights 27
code example - using rasterizers 16
code example - using shaders 21
credits 36

defined constants 35

determing transparency 31

display list optimization 31

end of frame 9

enumerant namespace 12

frame generation 8

frame setup 9

function and enumerant tables 32
function namespace 12

geometry definition 9
glDeleteLight EXT 28
glDeleteLightGroupEXT 28
glDeleteShaderEXT 23
glDisableLightGroupEXT 28
glDisable 28

glDisable 31
glEnableLightGroupEXT 28
glEnable 28

glEnable 31

glEndShaderEXT 23
glGetLightFunctionEXT 29
glGetLight 28
glGetMateriallnterpEXT 18
glGetMaterialParameterNameEXT 23
glGetMaterialParametersEXT 23
glGetMaterialParameterStringEXT 24
glGetMaterial 23
glGetNumMaterialParametersEXT 24
glGetRastParameterNameEXT 17
glGetRastParameterStringEXT 17
glGetRastParamEXT 16

38

glGetSurfaceEXT 24

glGet 23

glGet 28

gllsLight EXT 29
gllsLightGroupEXT 29
gllsMaterial ParameterEXT 24
gllsMaterialUniformEXT 24
gllsShaderEXT 24
glLightGroupEXT 29
glLightModel EXT 29

glLight 29
glLoadExtensionCodeEXT 13
glMateriallnterpEXT 18
glMaterial VaryingEXT 25
glMaterial 24
gINewLight EXT 29
gINewLightGroupEXT 29
gINewShaderEXT 25

glossary 35

glRastParamEXT 17
glSequencePoint EXT 17
glShaderEXT 25
glSurfaceEXT 25
glTransparency EXT 30
glVertex() and sequence points 17
image warping 30

interpolator API definitions 18
interpolator names 33
interpolators 18

interpolator 14

introduction 5

light API definitions 28

light function names 32

light function 26

light group 26

light parameter names 32
lights, creating 26

lights, using 27

loading application-defined code 13
multiple application threads 31
names of OpenGL objects 13
namespace 12

new namespaces 12

nonvarying parameter 20
OpenGL variances 31
pipeline programming 30
primitive distribution algorithm 10
primitive distribution 10
programmable lighting 26
programmable rasterization 14
programmable shading 19
pxDistributionMode 10
pxGetDistributionMode 11
rasterizer API definitions 16
rasterizer function names 33
rasterizer function 15
rasterizer parameter names 33
rasterizer parameter 15
rasterizers, using 15
roadmap 6

sequence point 15

shader function names 33
shader function 19

shader parameter names 33
shader parameter 19
shaders, creating 20
shaders, using 21

shader 19

shading API definitions 23
transparency 30

uniform parameter 20
unsupported features 32
varying parameter 20
vertex array extensions 17

39

PixelFlow Shading Language
Marc Olano
Revised: 15 September 1997

1 Overview

The PixelFlow shading language is a special purpose C-like language for describing the shading of
surfaces on the PixelFlow graphics system. On PixelFlow, some shading function written in the shading
language is associated with each primitive. The shading function is executed for each visible pixel (or
sample for antialiasing) to determine its color. The language is based heavily on the RenderMan shading
language!.

2 Data

2.1 Built in types

Only a few simple data types are supported. The simplest type is void. As with C, it is only used as a
return type for functions that have no return value. There is a floating point type, float, used for most
scalar values. There is a fixed point type, fixed, provided for efficiency. And there are literal strings,
useful for print formatting?. Note that, unlike RenderMan, the string type is not used as an identifier for
texture maps, instead a scalar ID is used.

The fixed type has two parameters: the size in bits and an exponent. So it is really a class of types,
given as fixed<size, exponent>. For exponents between zero and the bit size, the exponent can also be
thought of as the number of fractional bits. Note however, that an exponent larger than the size or less
than zero is perfectly legal. A two byte integer would be fixed<16, 0>, while a two byte pure fraction
would be fixed<16, 16>. It is possible to translate back and forth between the real value and stored value
using these equations:

real_value = stored_value

stored_value = real_value
However, it is much less confusing to always think of the real value. For example, with a fixed<8,8>,
never think of the value as 128, instead think 0.5. An unspecified fixed point type can also be used,
declared simply as fixed, and its size and exponent will be chosen automatically?.

It is also possible to have arrays of these basic types, declared in a C-like syntax (i.c. float color[3]).
The declaration float color[3], declares color to be a 1D array of three floats, color[0], color[1], and
color[2]. You can also look at color as a variable of type float[3], and an equivalent definition would be
float[3] color. Note the behavior of mixing these two types of definitions: float[2][3] color_list, float[3]
color_list[2] and float color_list[2][3] are all equivalent. As with C, it is not necessary to give all of the
indices for an array at once. While color_list[1][1] is a float, color_list[0] and color_list[1] arc each
float[3] 1D arrays. Where RenderMan uses separate types for points, vectors, normals, and colors, pfman
uses arrays.

-exponent

exponent

2.2 Type attributes

As with RenderMan, types may be declared to be cither uniform or varying. A varying variable is
one that might vary from pixel to pixel, similar plural in MasPar’s mpl. A uniform variable is one that
will not vary from pixel to pixel, similar to singular in MasPar’s mpl. It deserves mentioning again that
declaring a variable to be varying does not imply that it will vary, only that it might. If not specified,
shader parameters default to uniform and local variables default to varying.

Variables of the fixed type may be declared signed or unsigned. The size of a fixed point type does
not include the extra sign bit added by signed. So a signed fixed<15,0> takes 16 bits. If not specified, all
fixed point variables default to signed.

1 Upsill, Steve, The RenderMan Companion, Addison-Wesley, 1990.

2 As of September 13, 1997, strings for calls to printf are not supported.

3 As of September 13, 1997, automatic fixed point variables are not supported. The sizes produced by
automatic fixed types will have to be pessimistic in their size estimation. Error analysis and explicit fixed
point sizes is sure to make better use of memory.

There are a number of additional attributes for shader parameters. One transformation type can be
given for any parameter. These are transform_as_vector, transform_as_normal, transform_as_point,
transform_as_plane, or transform_as_texture*. A parameter can also be declared to be unit if it should
be unit length. For example, you might declare a parameter

unit transform_as_vector float v[3];
These attributes only affect what happens to the parameter before it is passed to the shader. They do not
affect how the parameter is used inside the shader. For example, a unit parameter will not remain unit
length. These attributes also cannot be used to distinguish versions of an overloaded function.

2.3 User defined types
Aliases can be defined for types with a C-like typedef statement. typedef is only legal outside
function definitions. The typedef statement only provides aliases for types, no distinction is made
between equivalent types with different names. The statement
typedef float Point[3], Normal[3];
declares Point and Normal to both be types which can be used completely interchangably with float[3].

3 Expressions

3.1 Operators
The set of operators and operator precedence is fairly similar to that of C (it was based on a grammar
for ANSI C). The full list of operators and their precedence is given in Figure 1.

Operation Associativity | Purpose
() — expression grouping
++ —= [] — postfix increment and decrement, array index
++ = = ! — prefix increment and decrement, arithmetic and
logical negation
() — type cast
~ left xor / cross product / wedge product®
* /% left multiplication, division, mod
+ - left addition, subtraction
& left bitwise and’
| left bitwise or®
<< >> left shift?
< <= >= > left comparison
== I= left comparison
&& left logical and
[left logical or
?: right conditional expression
= 4= —= *= /= ~= right assignment!®
, — expression list

Figure 1. Operator precedence

3.2 Operations on arrays!l
Operations on arrays are defined as the corresponding vecor, matrix, or tensor operation. The unary
operations act on all elements of the array. Addition, subtraction, and assignment require arrays of equal

4 As of March 4, 1995, vectors and points are transformed the same and normals and planes are
transformed the same.

3 As of September 13, 1997, unit has no affect (parameters declared unit are not normalized).

6 As of March 4, 1995, none of xor, cross product, or wedge product are implemented.

7 & only works between identical fixed point types.

8 | only works between identical fixed point types.

9 As of September 13, 1997, left and right shift are only implemented for varying integer shift values
10 As of September 13, 1997, = is not implemented

1T As of September 13, 1997, Array cross product, and inverse do not work.

5- 42

dimension and do the operation between corresponding elements (i.e. a + b gives the standard matrix
addition of a and b). The comparison operations also require arrays of equal dimension, though only ==
and != are defined.

Multiplication between vectors gives a dot product, between vector and matrix, matrix and vector, or
matrix and matrix gives the appopriate matrix multiplication. More generally, multiplication between any
two arrays gives the tensor contraction of the last index of the first array against the first index of the
second array. In other words, for float a[3][3][3], float b[3][3][3] and float ¢[3][3][3][3],

c=a*bh;
is equivalent to
float i, j, k, I;
for(i=0; i<3; i++)
for(j=0; j<3; j++)
for(k=0; k<3; k++)
for(1=0; 1<3; 1++) {
c[il[jlk]] = 0;
for(m=0; m<3; m++)
c[il[j1Kk]] += a[i][jl[m] * b[m][K][1];
}

Division can also be used as a matrix inverse. 1/ a is the inverse of a square matrix aand b/ a
multiplies b by the inverse of square matrix a.

Finally, the # operator gives the cross product between two vectors or the tensor wedge product
between two arrays.

3.3 Inline arrays!2

C-style array initializers are allowed in any expression as an anonymous array. So a 3x3 identity
matrix might be coded as {{1,0,0},{0,1,0},{0,0,1}}, while the computed elements of a point on a
paraboloid might be filled in with {x, y, x*x+y*y}.

3.4 Einstein summation notationl3

Inside any statement block, the uniform integer variables $1, $2, ... are automatically defined. For
example for float a[3], b[3], the expression a[$1] * b[$1] is equivalent to a[0]*b[0] + a[1]*b[1] +
a[2]*b[2] (which in this case, is equivalent to a * b).

4 Statements

4.1 Compound statements
As with C, anywhere a statement is legal, a compound statement is legal as well. A compound
statement is just a list of statements delimited by § and }.

4.2 Expression statements
Any expression followed by a ; is a legal statement.

4,3 Standard control statements
Most of the control statements are borrowed directly from C.14

if (condition expression) statement for true
if (condition_expression) statement_for_true else statement_for false
while (condition_expression) loop_statement
do loop_statement until (condition_expression);
for (initial expression; condition expr; increment expression) loop_statement
break;
continue;

12 As of September 13, 1997, inline arrays can only have constants for their array elements.

13 As of September 13, 1997, Einstein summation notation is not implemented

14 Due to limitations of PixelFlow, the condition_expression’s must be uniform for all of the looping
control statements. The condition for an if can be either uniform or varying.

5-43

return;
return return_value expression;
In addition, there are several control statements taken from the RenderMan shading language to aid
in shading. They are illuminance, illuminate, and solar.
The illuminance statement,
illuminance () statement
illuminance (position_expression) statement
illuminance (position_expression, axis_expression, angle expression) statement
acts like a loop over the available light sources. It can also be thought of as an integral over the incoming
light. For each light that can hit a pixel at the given position, or can hit a surface at the given position
with the given orientation and visibility angle, the light source function is run, returning a light color and
intensity that can be used in the statement. The light direction can be accessed using the px_rc_1
parameter to the shader. The light color can be accessed using the px_rc¢_cl parameter to the shader.
The illuminate and solar statements,
illuminate (position_expression) statement
illuminate (position_expression, axis_angle, angle_expression) statement
solar (axis_angle, angle expression) statement
solar () statement
provide the information the illuminace statement uses to tell if a light source function should be run or
not. They can also be thought of as conditional statements that only execute the associated statement if
the current pixel position falls within the light’s area. The four statements above correspond to a point
light, a spot light, a directional light, and an ambient light!5.

4.4 Declaration statements

Variable declarations can occur anywhere a statement can. They consist of a type and a list of new
variable names to declare. Each variable name can have additional array dimensions and an expression
for the initial value.

float a[3], b=2%x, ¢;
declares a as an uninitialized 1D float array with 3 elements, b as a float with an initial value twice
whatever is in the x variable at the declaration time, and ¢ as an uninitialized float.

Each compound statement defines a new scope, so variables can be redefined within a compound
statement without conflicting with function or variable names in other scopes. It is illegal, however, to
have a variable in any scope with the same name as any user defined type. This is true even if the typedef
occurs after the variable declaration.

5 Functions

5.1 Overloading

Function overloading similar to C++ is supported. So functions of the same name that can be
destinguished by their input parameters are considered distinct. This provides the ability to have seperate
versions of functions for uniform and varying parameters, float and fixed, or different fixed point types.
Note that functions cannot be overloaded based on their return parameters and operator overloading is not
supported.

5.2 Definition
A function definition gives the return type, name, parameters, and body that define the function.
Function definitions cannot be nested. By default, function parameters and return types are uniform. A
simple function definition:
float factorial(float n) {
if(m>1)
return n * factorial(n);

151 don’t really like the way this works in RenderMan. Is there a use to placing some of the light code
within an illuminate statement and some outside? Is it too specialized for a couple of particular light
types? Whether I understand it or not, it’s there.

else
return 1;
}
The formal parameters to a function have their own scope level between the global scope and the function
body, so their names can hide the global function names. As with variables, it is illegal to have a function
or parameter with the same name as a user defined type, regardless of where in the source the typedef
occurs.

5.3 Shading functions!6

There are several special return types to indicate that a function has some special rendering purpose
and may need to be called by the PixelFlow rendering library. These are primitive, interpolator, surface,
light, and image. A primitive function computes which pixels are in some rendering primitive like a
triangle or sphere; an interpolator function computes the value for some shading parameter across a
number of pixels; a surface function computes the shading on a surface (the archetypal shading function);
a light function computes the color and intensity of a light; and an image computes the final color and
location of the image pixels (handling image warping, fog effects, etc.). For all of these functions, each
parameter can have a default value in case the graphics library is not given a value for that parameter.
These are given just by putting an = value (just like variable initialization) in the parameter list. These
default values must be compile-time constants. It is perfectly legal to call a surface shading function from
inside another surface shading function!”?. In this case, only one illuminance statement can occur in
cither the original surface shader or any called by it.

5.4 Prototypes
Any function that is to be used before it is defined, or that is defined in a different source file, must
have a prototype. A function prototype is just like a function definition, but with a ; instead of the
function body
float factorial(float n);

5.5 Internal details and External linkage

The pfman shading language compiler turns shading language source code into C++ source code that
must be further compiled with a C++ compiler. The function definitions created by the compiler and
function calls made by it correspond directly to C++ function definitions and function calls. It is possible
(and supported) to call C++ functions from shading language functions and to call shading language
functions from C++. This facility is limited to functions using types that the shading language supports.

Pfman adds some additional arguments added by the compiler. The new first argument is a pointer to
the PixelFlow IGCStream where the instruction stream for the pixel processors should go. The new
second argument is a pointer to a PixelFlow GLStage class, which contains information about the
rendering context. The new third argument is a pointer to the PixelFlow pixel memory map class. For
functions with a varying return value, the new third argument is the address for the return value. All the
other arguments follow. There are C++ classes for varying float and fixed parameters giving their
address, and in the case of fixed parameters, their size and binary point position. Details of these types
and the prototypes for the different kinds of shading functions are beyond the scope of this document.

Standard C or C++ functions can be used by pfman by prefixing their prototype with extern “C” or
extern “C++”. All of the uniform math library routines are declared this way. These tell pfman not to
add the extra function parameters. Similarly, pfman functions that contain only uniform operations can be
declared extern “C” or extern “C-++” for use by code outside of pfman.

16 As of September 13, 1997, only surface and light are supported.
17 As of September 13, 1997, it is not possible to call either surface shaders from inside surface shaders.

5-45

Implementing PixelFlow Shading

Marc Olano

In the previous sections of this chapter, we covered the interface seen by both application
and shader writers. In this section, we cover the basic knowledge of the PixelFlow
hardware required to understand the implementation issues. For more details on the
PixelFlow architecture, see [Molnar91][Molnar92][Eyles97]. We also cover some
intermediate levels of abstraction between PixelFlow and an abstract graphics pipeline
and explain how our procedural stages fit into the real PixelFlow pipeline.

Our abstract pipeline consists of procedures for each stage in the rendering process.
Since these can be programmed completely independently, it is possible (and expected)
that a particular hardware implementation may not have procedural interfaces for all
stages. While PixelFlow is theoretically capable of programmability at every stage of the
abstract pipeline, our implementation only provided high-level language support for
surface shading, lighting, and primitives. The underlying PixelFlow software includes
provisions for programmable testbed-style atmospheric and image warping functions,
but we did not supply any special-purpose language support for these.

1. High-level view

PixelFlow consists of a host workstation, a number of rendering nodes, a number of
shading nodes, and a frame buffer node. The hardware and lower level software handle
the scheduling and task assignment between the nodes, so we can consider the flow of
data in the system as the pipeline shown in Figure 1. This view is based on the passage of
a single displayed pixel through the system. Neighboring pixels may have been operated
on by different physical nodes at each stage of this simplified pipeline. This will be
covered in more detail later in this chapter. For the purposes of mapping the abstract
pipeline onto PixelFlow, the simplified view of the physical PixelFlow pipeline is sufficient.

rendering
node

|

shading
node

frame buftler
node

Figure 1. Simplified view of the PixelFlow system

1.1. Applying the abstract pipeline

The mapping of an abstract pipeline onto PixelFlow is shown in Figure 2. This abstract
pipeline is divided into stages based on a set of logical rendering tasks. Contrast this with
the abstract model presented later in Chapter 8, in which a single shader spans several
computational units.

The modeling, transformation, primitive, and interpolation stages are handled by the
rendering node. The shading, lighting, and atmospheric stages are handled by the
shading node. Finally, the image warping stage is handled by the frame buffer node.

3D geometry

» YO
rendering

{

model transform |

1

I primitive interpolate |

i

shade i-—-} light I shading

atmospheric

. frame buffer
image

]

image pixels
Figure 2. Procedure pipeline.

When mapping the abstract pipeline onto PixelFlow, we maintain the interfaces to the
pipeline stages. Thus, the procedures written for PixelFlow should look exactly the same
as the procedures written for a different machine with a different organization. The code
for each stage is written just as if it were part of some arbitrary rendering system
implementing the abstract pipeline.

It is important to notice that the abstract pipeline only provides a conceptual view for
programming the stages. It allows the procedure programmer to pretend that the
machine is just a simple pipeline instead of a large multicomputer. The real stages do not
need to be executed strictly in the order given (and, in fact, are not). The user writing code
for one of the stages does not need to know the differences between the execution order
given in the abstract pipeline and the true execution order. The mapping of the abstract
pipeline onto PixelFlow exhibits several different forms of this.

The first example is the overall organization of the processes on PixelFlow. PixelFlow
completes all of the modeling, transformation, primitives, and interpolation in the
rendering nodes before sending the shading parameters for the visible pixels on to a
shading node. PixelFlow then completes all of the shading, lighting, and atmospheric

5-48

effects before sending the completed pixels on to the frame buffer node for warping. On a
different graphics architecture, it might make more sense to complete all of the stages for
every pixel in a primitive before moving on to the next primitive. Either choice appears the
same to users who write the procedures. The abstract pipeline does not include
information about the stage scheduling to allow just such implementation flexibility.

The procedures running on the PixelFlow rendering nodes provide another example. The
abstract pipeline presents transformation, primitive, and interpolation as if they were a
sequential chain of processes. On PixelFlow, the primitive stage drives transformation
and interpolation. A procedural primitive function is invoked for each primitive to be
rendered. This function calls both transformation and interpolation functions on demand
as needed. The results stored for each pixel include its depth, an identifier for which
procedural shader to use and the shading parameters for that procedural shader. Once
again, the user writes procedures as if they were independent sequential stages and is not
aware of the true ordering within the PixelFlow implementation.

The final example is with the shading and lighting stages. The abstract pipeline presents
shading and lighting as if the shading stage called the lighting stage for each light. On
PixelFlow, the linkage between these stages is not as direct. These two stages run with an
interleaved execution scheduled by the PixelFlow software system. This interleaving is
explained in more detail in [Olano98]. And again, the interleaved scheduling is hidden from
anyone who writes a shading or lighting procedure.

1.2. Parameter manager

Supporting this pipeline is a software framework that handles the details of the rendering
process and the communication between the programmable procedures. That
communication is assisted by a global parameter manager, implemented on PixelFlow by
Rich Holloway. The parameter manager allows each node in the system to find values or
pixel memory addresses of the parameters. It also keeps track of other attributes of each
parameter - its type and size, default values, whether it needs to be transformed (and
how), etc. Whenever a procedure is compiled, an extra load function is generated. This
load function is run when the procedure is loaded by the application. The load function
registers all of the parameters used or produced by the procedure. The parameter
manager collects this information and makes sure each parameter is available when it is
needed. This global parameter space is similar to the shared memory "blackboard" idea
used by MENV [Reeves90].

2. Low-level view

The PixelFlow system data-flow was show in Figure 1. A view of the hardware at that
level was sufficient to understand how the abstract pipeline maps onto PixelFlow. We
must delve deeper to understand some of the issues that impacted our implementation.
Where Figure 1 showed only a single stage for rendering and shading, PixelFlow may
have many nodes (see Figure 3). There are also two networks connecting the nodes in the
PixelFlow system, the geometry network and composition network. The rendering nodes
and shading nodes are identical, so the balance between rendering performance and
shading performance can be decided on an application by application basis. The frame
buffer node is also the same, though it includes an additional daughter cardto produce

5-49

video output.

host

workstation .
rendering =y
node =
T
=
=
shading F
node ,'S-
=]
frame buffer =
node

Figure 3. PixelFlow machine organization.

Each rendering node is responsible for rasterizing an effectively randomly chosen subset
of the primitives in the scene. The rendering nodes work on one 128x64 pixel region at a
time (or 128x64 image samples when antialiasing). Many of our examples and tests are
based on either an NTSC video screen size of 640x512 pixels with four samples per pixel,
or a high-resolution screen size of 1280x1024 pixels. There are 40 regions in an NTSC
image with no antialiasing. With antialiasing using four samples per pixel, the NTSC
image has 160 regions. Without antialiasing, the high-resolution image also has 160
regions. Therefore, our target is to be able to handle 160-128x64 regions at NTSC video

rates of 30 frames per second.

Since each rendering node has only a subset of the primitives, a region rendered by one
node will have holes and missing polygons. The different versions of the region are
merged using image composition. PixelFlow includes a special high-bandwidth network
called the composition network with hardware support for these comparisons. As all of the
rendering nodes simultaneously transmit their data for a region, the network hardware on
each node compares, pixel-by-pixel, the data it is transmitting with the data coming in
from the upstream nodes. It keeps only the closest of each pair of pixels to send
downstream. By the time all of the pixels reach their destination, one of the shading

nodes, the composition is complete.

Once a shading node has received the data, it does the surface shading for the entire
region. The technique of shading after the pixel visibility has been determined is called
deferred shading [Deering88][Ellsworth91]. Deferred shading only spends time shading the
pixels that are actually visible, and allows us to do shading computations for many more
pixels in parallel. With non-deferred shading, each primitive is shaded separately. With
deferred shading, all primitives in a region that use the same procedural shader can be

shaded at the same time.

In a PixelFlow system with n shading nodes, each shades every n*" region. Once each
region has been shaded, it is sent over the composition network (without compositing) to

the frame buffer node, where the regions are collected and displayed.

3. PixelFlow node

The nodes on PixelFlow all look quite similar (See Figure 4). Each node of the PixelFlow
system has two RISC processors (HP-PA 8000's), a 128x64 custom SIMD array of pixel
processors, and a texture memory store. Only the rendering nodes make use of the
second RISC processor, where the primitives assigned to the node are divided between
the processors. The existence of the second RISC processor does not impact our
implementation, so we can take the simplified view that there is only one processor on the
node and let the lower level software handle the scheduling between the physical
processors. The RISC processors share 128 MB of memory, while each pixel processor
has access to 256 bytes of local memory. The texture memory exists in several replicated
banks for access speed, but the apparent size is 64 MB.

SC |4 sn =
< el RISC [SIMD [E
= processor array | =
& : D
o =
2 A texture/ E
= <A frame buffer | =
= | memory =

Figure 4. Simple block diagram of a PixelFlow node

Each node is connected to two communication networks. The geometry network, carries
information about the scene geometry and other data bound for the RISC processors.
This network is four bytes wide and operates at 200 MHz. It can simultaneously send data
in both directions, giving a total bandwidth of 800 MB/s in each direction. The composition
network handles transfers of pixel data from node to node. It also operates in
simultaneously in both directions at 200 MHz. However, the composition network is

32 bytes wide, giving a bandwidth of 6.4 GB/s in each direction. Four bytes of every
transfer is reserved for the pixel depth, reducing the effective bandwidth to 5.6 GB/s.

3.1. Compiler target

Every procedural stage on PixelFlow has a testbed-style interface, which allows new
stage procedures to be created using the internal libraries of the PixelFlow system.
Writing code new procedures using this interface requires a deep understanding of the
implementation and operation of PixelFlow, more than will be provided in this dissertation.
We provide a high-level, special-purpose language so the users who write new
procedures will not need to have that level of understanding of PixelFlow. It also makes
rapid prototyping and porting procedures to other systems possible.

The compiler for our special-purpose language produces C++ code that exactly
conforms to the testbed interface. This code consists of two functions, a load function
(mentioned in section 1.2), and the actual code for the procedure. The code for the
procedure is run on the RISC processor and includes embedded EMC functions. Each
EMC function puts one SIMD instruction into an instruction stream buffer. The EMC prefix
that appears on all of these functions stands for enhanced memory controller, from the
Pixel-Planes SIMD array's origin as a processor-enhanced memory; we use it here just to
identify the functions that generate the SIMD instruction stream.

When the C++ code for a procedure is run, the result is a buffer full of instructions for the
SIMD array. This instruction stream buffer can be sent to the SIMD array several times
without requiring the original C++ code to be re-executed.

There are two forms of EMC function used in PixelFlow. The form used on the shading
nodes checks the available space in the instruction stream buffer with each instruction
and can re-allocate the buffer on the fly. The form used in the rendering nodes requires a
buffer of sufficient size to be allocated at the beginning of the procedure. The reason for
this difference, and the issues that result, are discussed in Section [Olano99].

Chapter 6

Procedural Solid Texturing
John C. Hart

Proc. Eurographics/SIGGRAPH Graphics Hardware Workshop, Aug. 1999, pp. 45-53.

Antialiased Parameterized Solid Texturing Simplified for Consumer-
Level Hardware Implementation

John C. Hart, Nate Carr, Masaki Kameya

Washington State University

Abstract

Procedural solid texturing was introduced fourteen years ago, but
has yet to find its way into consumer level graphics hardware for
real-time operation. To this end, a new model is introduced that
yields a parameterized function capable of synthesizing the most
common procedural solid textures, specifically wood, marble,
clouds and fire. This model is simple enough to be implemented
in hardware, and can be realized in VLSI with as little as 100,000
gates.

The new model also yields a new method for antialiasing
synthesized textures. An expression for the necessary box filter
width is derived as a function of the texturing parameters, the
texture coordinates and the rasterization variables. Given this
filter width, a technique for efficiently box filtering the
synthesized texture by either mip mapping the color table or using
a summed area color table are presented. Examples of the
antialiased results are shown.

CR Categories: 1.3.1 [Computer Graphics]: Hardware
Architecture --- Graphics processors; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism --- Color, shading,
shadowing and texture.

Keywords: antialiasing, hardware. procedural texturing, solid
texturing.

1. INTRODUCTION

Peachey [1985] and Perlin [1985] introduced procedural solid
texturing as a method for simulating the sculpture of objects
(of arbitrary detail and genus) out of a solid
material such as wood or stone, and also the
simulation of the natural elements of fire, water

Addresses: WSU, School of EECS, Pullman. WA 99164-2752
{hart,ncarr,mkameya}@eecs.wsu.edu.
E&S (Seattle), 33400 8" Ave. S. #136, Federal Way, WA 98003

{stibbitt,tcoleman}@es.com.

Stephen A. Tibbitts, Terrance J. Coleman

Evans and Sutherland Computer Corp.

(waves), air (clouds) and earth (terrain and planets).
Figure 1 through Figure 6 illustrate the variety of images that can
be synthesized using procedural solid textures.

Solid texturing creates the illusion that a shape is carved out of a
solid three-dimensional substance. The details of a solid texture
align across edges and corners of an object surface. For example
the grain features on the teapots in Figure 1 and Figure 2 align
with the block of material out of which they were sculpted.
Depending on the detail and genus of the object, similar alignment
of 2-D image texture maps can be very tricky [Peachey, 1985].

Procedural textures require much less memory than stored image
textures, and unlike image textures their resolution depends only
on computation precision. The sky and water in Figure 3 extend to
infinity with non-repeating procedural detail. The fire in Figure 4
is procedurally textured on a single polygon. Zooming into the
coastlines of the planet in Figure 5 reveals an arbitrarily intricate
level of detail depending on the number of noise functions used in
its generation. Figure 6 simulates the reflection of the moon on
water without ray tracing or environment mapping by clever
manipulation of the color maps of a procedural texture.

While this popular, powerful and flexible technique is found in
nearly all high-quality photorealistic rendering packages, it has
not yet found its way into consumer-level hardware for real-time
rendering. Procedural solid textures would greatly enrich the
quality of some of the 2D-image-textured graphical elements
found in 3-D interactive games and virtual worlds, not only with
wooden and stone objects, but with expansive terrain, oceans and
skies filled with non-repeating detail.

Hardware implementation would also support the real-time
animation of procedural textures. Varying the parameters of a
procedure yields a dynamic animated texture. Depending on the
paths chosen through parameter space, these animations can
smoothly loop or be non-repeating. These animated textures
would support such effects as ripples forming in marble, fire
exploding, waves gently rising and falling, clouds billowing, and
continents forming on planets.

1.1. Previous Work

Some have identified memory bandwidth as a major obstacle in
increasing the performance of real-time graphics hardware. While
memory size grows at a rate of 50% per year (one thousandfold
over the past two decades), memory bandwidth only grows 12%
per year (only tenfold over the past two decades) [Torborg &
Kajiya, 1996]. Texture mapping in particular relies heavily on
memory, and the bandwidth of this memory is the primary factor
limiting the number and complexity of 2-D image textures

Figure 1: Carved wooden teapot.
.

Figure 4: Fire.

available in real-time. Some have overcome the memory
bandwidth limitation at the expense of increasing memory size to
hold multiple redundant copies of the texture [Akeley, 1993],
[Montrym, et al, 1997]. Others relaxed the memory bandwidth
limitation by reducing the size of the textures via compression
[Torborg & Kajiya, 1996],[Beers, et al, 1996]. Procedural
texturing hardware is a way of increasing the performance of
current graphics hardware by augmenting its existing pre-stored 2-
D image textures with a variety of procedural solid textures
without impacting the hardware’s memory requirements.

Accessing a procedural texture requires more time than an image
texture as the texture value must be computed instead of accessed
from memory. Hence, real-time procedural texturing has
previously only been available in high-end parallel graphics
systems. For «ample, Pixel Planes [Rhoades, et al, 1992],
PixelFlow [Molnar, ef al., 1992] and the Pixel Machine [Potmesil
& Hoffert, 1989] all supported real-time procedural texturing.
Indeed, PixelFlow now has a fully-developed procedural shading
system, including support for procedural solid texturing [Olano &
Lastra, 1998].

Solid texturing is also not new to hardware implementation. The
Reality Engine, for example, has the memory bandwidth
necessary to support prestored solid texture volumes up to a
maximum resolution of 256 x 256 x 64 texture elements [Akeley,
1993]. The InfiniteReality graphics system [Montrym, et al.,
1997] has 1GB of physical texture memory that could be
organized into a 1024° pre-stored solid texture volume.

Antialiasing procedural textures is more complicated than for
stored image textures. Whereas MIP maps [Williams, 1983] and
summed-area tables [Crow, 1984] can be precomputed and stored
for image textures, procedural textures are generated on the fly
and such antialiasing techniques can not be readily applied.

\)

Figure 2: Marble teapot sculpture.

Figure 5: Planet.

Figure 3: Seascape.

Figure 6: Moonrise.

Supersampling is a common technique for antialiasing procedural
textures but directly increases rendering time. For example,
supersampling was the method used to inhibit aliasing in
PixelFlow’s procedural textures [Olano & Lastra, 1998].
Bandlimiting the procedural texture is also an effective technique
[Norton, et al., 1982], but works easily and efficiently only on
procedures based completely on spectral synthesis.

1.2. Overview

Section 2 introduces a texture model capable of synthesizing the
most commonly used procedural textures (in fact all textures in
Figure 1 through Figure 6) but concise enough to implement in
hardware. The identification of this model allows the textures to
be specified by parameters to a fixed procedure which can be
simplified enough to be implemented in present-day VLSI
technology.

Section 3 introduces a new method for antialiasing procedural
textures based on computing a first order approximation of the
color index variance over the area of a pixel. This approximation
allows the antialiasing method to simulate an area sample of the
textured image faster than supersampling. Unlike bandlimiting
(which is a pre-filter), the new method is a post-filter that does not
affect the parameters of the generation of the texture.

Section 4 exhibits the results of this model, exploring the various
tradeoffs necessary to feasibly implement the model without
significantly compromising image quality. An effective but
reduced model can be implemented with as few as 100,000 gates,
which is about 10% of the real-estate of modern consumer-level
graphics processors.

2. A MODEL FOR PROCEDURAL
TEXTURING

Various formalisms on procedural solid texture specifications
have been proposed. Perhaps the most pervasive has been the
Renderman shading language [Hanrahan & Lawson, 1990], but
there are also other alternatives (e.g. [Abram & Whitted, 1990]).
We propose a concise class of procedures capable of synthesizing
a variety of textures and effects, but simple and direct enough to
facilitate hardware implementation. The procedures are
parameterized by values that completely control the type and
character of the texture this model generates, such that these
parameters (and the texture’s color map) are the only
representation of the texture that need be stored.

2.1. Analytical Model

Procedural solid texture mapping uses a mapping of the form p:
R*—R* from solid texture coordinates s = (s,£,r) into a color space
(R,G,B,at). (We follow the convention of using boldface to
indicate vector values and functions, and italics to indicate scalar
values and functions.) Some texture mapping techniques also
include a homogeneous texture coordinate [Segal, ef al, 1992] but
it remains to be explored how such a coordinate benefits
procedural solid texturing. Often procedural solid textures
incorporate a color map. In such cases, p = ¢ 0 f consisting of an
implicit classification of the texture space f R*—R and a color
map ¢: R— R*.

For a given polygon, the texture coordinate functions s(x)=
(s(x),4x),r(x)) indicate the range of the texture coordinates with
respect to screen coordinates x=(x,y). Hence, the procedural
texture can be evaluated with respect to screen coordinates as p(x)
=co fos(x).

We restrict the texture map p to the family of functions

p(s) =c[q(s) +Zain<z(s>)} M

where ¢: R*—>R is a quadric classification function and n: R>—R
is a noise function. The combination of quadrics and noise yields
a specification sufficient to generate a wide variety of commonly
used procedural solid textures. The affine transformations T;
control the frequency and phase of the noise functions.

2.1.1. Color Map

The color map ¢ associates a color (R,G,B) with each index
returned by the classification function f The color map ¢ is
typically implemented as a lookup table

¢(/) = clut[round(n modclamp(f))] (2)

where clut[] is an array of n RGB color vectors. Color map
indices returned by f are, depending on a flag parameter, either
clamped to [0,1] or taken modulo one to map within the bounds of
the lookup table.

2.1.2. Quadric Classification Function
The function ¢: R®—R in (1) is the quadric

q(s,t,r)=As* +2Bst+ 2Csr + 2Ds + 3)
Et* +2Fr +2Gt+ Hr* +2Ir+J

which can more conveniently be represented homogeneously as

A B C Djis

B EF G|t @)
s)=s'Os=ls,t, 11
q()QS[SFCFH[r

D G I J

treating s as a homogeneous column vector [Blinn, 1982].

The quadric function supports the spherical, cylindrical,
hyperbolic and parabolic classification of space for texturing.

2.1.3. Noise Function

The function n: R*—R in (1) is an implementation of the Perlin
noise function [Perlin, 1985]. The values a; control the amplitude
of the noise function, whereas the affine transformation 7; controls
the frequency and phase of each noise component. There are a
fixed number of noise components available, and this limit is
typically between four and eight in typical texturing examples.

2.2. Texture Examples

The space of solid textures spanned by (1) covers the textures
most commonly found in procedural solid texturing. The four
fundamental procedural solid textures are: wood, clouds, marble
and fire.

2.21. Wood

The texture model generated the wood texture shown in Figure 1,
by using the quadratic function to classify the texture space into a
collection of concentric cylinders [Peachey, 1985]. Waviness in
the grain is created by modulation of a noise function

f(s,t,r)=s" +1* +n(4s,4t,r). 5)

The color map consists of a modulo-one linear interpolation of a
light “earlywood” grain and a darker “latewood” grain. The
quadric classification makes the early rings wider than the later
rings, which is to a first approximation consistent with tree
development.

2.2.2. Clouds

Cloudy skies are made with a fractal 1//'sum of noise
4
(&)=Y 2"n2's). ©)
i=1

The texture described by (6) is mapped onto a very large high-
altitude polygon parallel to the ground plane in Figure 3, resulting
in clouds that become more dense in the distance due to
perspective-corrected texturing coordinate interpolation. The color
map is a clamped linear interpolation from blue to white. The
water is the same procedural texture with a blue-to-black
colormap.

2.2.3. Marble

Marble uses the noise function to distort a linear ramp function of
one coordinate [Perlin, 1985]

F(s,t,r)=r+ izf"n(z"s,z"z,z"r)). @)

The color map consists of a modulo-one table of colors from a
cross section of the marble. Figure 2 demonstrates the marble
texture on a cube, and the solid texturing again aligns the texture
details on the edges of the cube. Continuously increasing the noise
amplitude animates the formation of the ripples in the marble,
simulating the pressure and heating process involved in the
development of marble [Ebert, 1994].

2.2.4. Fire

Like marble, fire is simulated by offsetting a texture coordinate
with fractal noise [Musgrave & Mandelbrot, 1989]. The fire
example shown in Figure 4 was textured onto a single polygon
and modeled as

fls.t,r)=r+ iZ'in(Zis,O,2ir+ »). ®)

Continuously varying the noise phase term ¢ animates the fire
texture.

2.2.5.

A wide variety of different worlds, such as the one shown in
Figure 5, can be generated by applying fractal textures, such as
(6), to spheres. The color map for such images resembles a
cartographic “legend.” The cloudy atmosphere was rendered on
the same sphere “over” the planet in a second pass using a color
map with varying opacity values.

2.2.6.

The moonrise in Figure 6 was rendered completely using
synthesized textures, without any other kind of shading. The
moon is a sphere with a fractal texture. The clouds were rendered
on a single polygon perpendicular to the viewer and imposed over
the moon. The water was rendered with a single polygon
extending off to infinity. The highlight on the water was faked
with two triangles textured using (7) with a partially transparent
color map.

3. ANTIALIASING

Image texture aliases occur due to texture magnification and
minification. Texture magnification occurs when the texture
image itself contains too few samples such that a single texture
element projects to several screen pixels. Texture minification
results when the projection of the texture image covers too few
pixels and several texture elements project to the same screen
pixel. Modern texture mapping hardware inhibits aliases due to
texture magnification by bilinear or bicubic interpolation of the
appropriate texture elements. Such hardware inhibits texture
minification aliases through the use of a MIP map that
precomputes lower resolution versions of the texture, and samples
the MIP map using trilinear or tricubic interpolation of
neighboring pixels at the appropriate resolution level.

Planet

Moonrise

Aliases of synthesized textures do not fall into such categories
since there is no fixed image resolution. Each such texture will
exhibit some form of aliasing if sampled below twice the highest
frequency in the texture’s spectrum, which may be infinite for
some textures. Hence, procedural textures do not suffer from
magnification aliases, but require filtering to remove frequencies
above the Nyquist limit to avoid minification aliases.

Synthetic textures could be antialiased by precomputing them,
storing the results in MIP-mapped image textures. However, such

clut
indices

S =

\

1 df/dx

dpldx 1

X pixels

Figure 7: The derivative df/dx approximates the extent of the color
map indices one pixel in either direction. Half of the derivative
estimates the variation in color map indices half of a pixel in either

direction.

an antialiasing technique would remove the flexibility such
textures provided, and would also consume a tremendous amount
of space when used on solid textures. Band limiting the output of
the texture map removes aliases by prefiltering the texture before
sampling [Norton, et al., 1982], but is difficult to implement in a
generalized texturing environment. Supersampling the texture
degrades time perfomance and arbitrarily increases the complexity
of the hardware implementation.

Instead, we analyze the function p(x) that textures pixels to
determine the width of a box filter that would eliminate the
aliasing frequencies from the spectrum of the synthesized texture.
Several have described techniques for antialiasing procedural
textures by antialiasing the textures’ colormaps [Rhoades, ef al.,
1992], [Worley, 1994]. In the next section, we provide a more
rigorous mathematical justification and derivation of the
technique, resulting in an ideal filter width for the texture which is
used to box filter to the procedural texture by averaging the
elements of the color table that the texture procedure generates
over the support of the filter.

3.1. Texture Filtering via Color Table
Filtering

Consider a domain D on the screen consisting of pixels whose
color is determined solely by the projection of a single
procedurally texture mapped polygon. We assume the color map
indices generated by the procedural texture are continuous across
the polygon. Let a = minp f{x) be the least possible color map
index used in the pixels in D, and let b = maxp f{x) be the greatest
such index. Then we assume

l)
_[dx " b-a

©)

the average color in D is sufficiently approximated by the average
of the color table entries between indices a and b. As shown in
Figure 7, we provide a first-order approximation of the bounds «
and b used in the RHS of (9) by differentiating the texture
function f(x) and setting a = f(x) - |[VAX)||2 and b = fix) +
[VAx)||/2. If either a or b or both fall outside the bounds of the
color table, then the boundary of the color table is extended using

Figure 8: Zone plate aliased (a) and filtered (b).

either the modulo or clamp operators according to the modclamp
flag.

The remainder of this section describes this differentiation in
detail, applies efficient methods for integrating the color map to
determine the numerator of the RHS of (9), and demonstrates the
results.

3.2. Differentiating the Texture
Procedure

The magnitude of the gradient Vf = (fdx,df/dy) indicates the
width of the appropriate filter on the color map. From (1), we
have that the gradient of f'is

Vf=Vq+ZaiVni (10)

where #; is the ith noise function: n(7T(s)). From (3) we have that
the gradient of ¢ is

T
Vq(X)=STQ%+(£j Os (11)
r~ds
=2s QX
[9s Os]
4 B C Dllax oy
B E F G|9 o
2[str0]CFH / gj g':
D G I J g $
O O

since Q is symmetric.

The derivative of the noise terms are given by

aIVn(T;s(X)) =aq, mﬂ ﬁ (12)
ds dx

The gradient dn/ds = [0n/ds dn/dt on/dr 0] is also known as the
function DNoise [Perlin, 1985].

The value ds/dx is the Jacobian of the texture coordinates s with
respect to the screen coordinates x. The values of ds/dx is
computed during the scan conversion of the polygon as the
perspective-corrected pixel increments. The values of ds/dy can be
computed for each triangle using the plane equation and
performing a perspective-correcting division.

3.3. Filtering the Color Table

The filtering of color map values can be evaluated efficiently
using either a color table MIP map or a summed area color table.

3.3.1. Color table MIP map

MIP maps are commonly used in standard texturing systems to
prefilter image textures and sample from the prefiltered texture
when the texture is minified (insufficiently sampled by the image
pixels) [Williams, 1983].

One may also create a MIP map of a color table. The process
begins with the n-element full resolution color table clut;[]. Then
neighboring colors in the table are averaged © create a half-
resolution n/2-element color table clut,[]. This process is repeated
until a one-element color table clut, ,[] results, representing the
average color of the entire color table.

Given a filter width w, let i = floor(lg w). Then the proper
resolution color table from the mip map is selected and the color
indexed is returned as clut;[fi] (or more accurately the linear or
cubic interpolation of the values of clut,[f/i] and clut,,[f/(i+1)]).

”L'L'ux'ﬁ'fl't't'ﬁ'i'[|||||,|||'|"'-_'

it

(b)

(©)
Figure 9: Torus rendered with wood texture (a) is antialiased
(b) using filterwidths shown in (c) ranging from one (black) to

256 (white).

3.3.2. Summed area color table

Image textures are also antialiased efficiently using the summed
area table [Crow, 1984]. A summed area table transforms
information into a structure that can quickly perform integration,
specifically a box filtering operation.

The summed area color table consists of a table where each entry
consists of the sum of all elements in the color table including the
current entry’s element

csafi]= Y clut]/] (13)

or recurrently as csat[i] = csat[i-1] + clut[i]. The current entry’s
element can be recovered by subtracting the previous summed
area element from the current summed area element as

clut[i] = csat[7] — csat[i-1] (14)

for i > 0. Box filtering the color map entries for a given filter
width is computed as

(csat[f+ w/2] - csat[f- w/2])/w. (15)

Special care must be taken for the cases where the support of the
filter crosses the bounds of the color table. For the following cases
let N is the number of entries in the color table.

® w > N: Return the average of the entire color map: esat[N-1]/N.

o f+w2>N:
mod: (csat[f+ w/2 — N] + csat[N-1] — csat[f— w/2 - 1])/w.
clamp: ((F+w/2—(N-1))clut[N-1] + csat[N-1] — csat[f~w/2-1])/w.

° f-w2<0:
mod: (csat[f+ w/2] + csat[N-1] - csat[N + - w/2 - 1])/w.
clamp: (-(f- w/2) clut[0] + csat[f+ w/2])/w.

An alternative to performing the above computations at render
time is to use the above formulae to precompute a color summed
area table three times as long, ranging from —N to 2N — 1.

3.4. Examples

The derivations in Section 3.2 show that procedural textures

produce aliasing artifacts from three possible places.

1. Quadric Variation: The quadric classification changes too
quickly: ||dg/ds|| too large.

2. Noise Variation: The noise changes too quickly:
aj||dn(T;s)/ds|| too large.

3. Texture Coordinate: The texture coordinates change too
quickly: ||ds/dx|| too large.

Each of these components can create a signal containing

frequencies exceeding the Nyqist limit of the pixel sampling rate.

Figure 8 demonstrates quadratic variation aliasing (type #1) with a
zone plate constructed from the procedure

f(s,t,7) = 505> + 50¢° - (16)

rendered with an extremely harsh “zebra” color map. Analysis of
(16) shows that the aliases are governed by Vf= dq/ds ds/dx, with
dq/ds = (100 5,100 £). The zone plate was plotted at a resolution of
256% and over the unit square in texture coordinate space, hence
ds/0x = dt/dy = 1/256. Setting the colormap filter width to (100 s
+ 100 #)/256 reduces the aliases to the point of being barely
noticable.

Noise variation aliases (type #2) happen in concert with texture
coordinate aliasing (type #3), since in a single scene the frequency
and amplitude of noise is constant, and only varies across the
image with distance from the viewer. For example, the clouds on
the horizon in Figure 3 do not alias near the horizon because the
filter width is scaled in part by the noise function derivative, and
increases as the magnitude of ds/dx increases. In the distance as
the projection of the noise reaches the Nyquist limit, the filter
width reaches the size of the entire color table, yielding a
homogeneous hazy blue color.

Figure 9 illustrates all three types of texture aliasing on a torus.
The centerline of the woodgrain rings passes through the left side
of the torus, creating grain of increasing frequency on the right.
Hence the filterwidth increases from the left to the right side of

4 bits

5 bits

6 bits

7 bits

8 bits

16 bits

Figure 10: The effect of numerical precision on texture appearance.

the torus demonstrating quadric variation (type #1) aliasing. The
amplitude and frequency of the noise term remains constant over
the torus object, and so causes a uniform increase of the
filterwidth due to noise variation (type #2) aliasing. The polygons
on the silhouette of the torus have larger filterwidths than their
neighbors, demonstrating texture coordinate (type #3) aliasing.

4. Results

The goal of the previous sections was to simplify the synthesis of
antialiased solid textures. In this section, we describe and
demonstrate software and simulated hardware implementations,
and document some of the tests performed in the process.

4.1. Software Implementation

The basic tool of this research is a simulator that implements in
fixed point arithmetic the texture synthesis model along with its
associated filtering and color table mechanisms, as well as a
prototype rasterizer. This simulator is responsible for all of the
textured images in this paper. While the textures themselves were
antialiased, the polygon edges were not. In fact, we avoided the
temptation to use many small polygons to create smoother
surfaces and silhouettes in order to better demonstrate the ability
of procedural textures instead of geometry to provide visual detail.

This simulator serves as an antialiasing procedural texturing
shader, and could be incorporated as a plug-in to existing software
rendering systems. This simulator also serves as the basis of an
extension to OpenGL, which already supports solid texture
coordinates. The current implementation uses the OpenGL
feedback buffer to collect the transformed polygons in screen
coordinates for rasterization by the simulator [Carr & Hart, 1999].
The resulting textured raster image generated by the simulator is
then combined with the raster image generated by OpenGL’s
rasterization engine using the associated zbuffers to negotiate
visibility. Hence the simulator integrates synthesized solid
textures into OpenGL’s existing texturing, lighting and modeling
system.

4.2. Hardware Implementation

A complete implementation of the model can be realized in VLSI
with 1.25 million gates, resulting in the image quality shown in
Figure 1 through Figure 6. A reduced and approximated version
of the texture synthesis model can be implemented in as few as
100,000 gates. Sample images from such an implementation are
exhibited in Figure 11.

Overall, the compromises in image quality necessary to
implement the model in 100,000 gates appear minor, and the
effects are very subtle. Some texture coordinate aliasing is
noticable on the polygons of the teapots closest to the viewer. The
character of the water, sky, planet and moonrise are slightly
smoother due to a reduction in the number of noise function
evaluations. The teapots and fire have noticable artifacts due to a
linear approximation to the noise function.

4.3. Precision Tests

Several tests have been conducted to determine the texture
coordinate precision necessary to avoid magnification aliases
[Kameya & Hart, 1999]. Figure 10 shows the results of tests with
a 512%pixel scene of a coarsely-triangulated objects computed
using a variety of texture coordinate precisions.

4.4. Animation Tests

The seascape was animated to determine the effectiveness of the
antialiasing technique. The seascape scene Figure 3) was the
most taxing on the colormap filtering algorithm because it
textures infinite planes. Two animations of flights into the horizon
were generated, one with and one without filtering. The unfiltered
animation resulted in severe aliasing in the form of distracting
noise near the horizon. The filtered animation significantly
reduced these aliases, although some very slight flicker is still
observable. This subtle flicker seems to be an inevitable
compromise of the colormap-averaging filter in that removing the
flicker results in textured planes that get too blurry too soon
before reaching the horizon.

Figure 11: 100,000 gate simulations of Figure 1 through Figure 6.

The flame shown in Figure 11 was also animated to determine
how effectively they would appear in the hardware
implementation. The rectilinear grid basis of the noise functions is
clearly evident due to the reduced number of noise octaves and
the tri-linear interpolation. However the animation does clearly
resemble burning flames and would sufficently represent such in
typical consumer real-time graphics applications.

5. Conclusion

We set out to formalize a model for synthesizing popular
procedural solid textures, and analyzed this model to derive an
effective antialiasing scheme and an efficient hardware
implementation. We showed that the model is capable of
simulating the common procedural textures of wood, clouds,
marble and fire, but is also simple enough to adequately
implement in hardware.

Often textures are animated, to simulate fire, billowing clouds and
other dynamic effects. Animation of texture map images requires
a significant amount of texture memory and fast CPU access to
the texture memory. The procedural texturing hardware will be
capable of real-time animation of clouds billowing, fire burning
and marble forming.

PixelFlow defered shading until after all of the rasterization was
completed [Molnar, et al, 1992]. It stored all of the shading
information in the frame buffer, such that each pixel was shaded
only once regardless of the number of polygons that overlapped it.
The procedural texturing hardware described in this paper could
be used to texture such pixels if the texture index, coordinates and
Jacobian were stored in the framebuffer.

5.1. Future Work

This work only scratches the surface of procedural texturing
hardware. Procedural texturing inexpensively overcomes the
fundamental graphics texture rendering problems of memory
bandwidth. With the success of this particular model, we expect
other more sophisticated texturing models will be developed. The
connotation of procedural texturing is that an actual program is
run to generate the texture. While our model uses a fixed program
with parameters controlling the character of its output, future
procedural texturing hardware might be designed to permit
uploading of texture programs. While such machines already exist
(e.g. the Pixel Machine, Pixel Planes) there is no restriction on the
texturing programs. Hence the user is burdened responsibility of
antialiasing. Restricting the language used to write a procedural
shader can increase the quality of its output, as it allows the
hardware to better analyse the program to predict the aliases its
output may contain, and automatically take measures to inhibit
those aliases.

The antialiasing technique was derived from the model, but there
is nothing specific to the model hat makes this antialiasing
technique work. Hence the color map antialiasing technique could
be generalized and applied to any procedural texture so long as
the derivatives are available. Computation of these derivatives is
straightforward for this simple model, but could be quite
complicated for true procedural textures described in a
programming language. The error associated with approximation
(9) should also be investigated further.

The colormap of the planet in Figure 5 is not continuous, jumping
from a sandy color to an aquamarine to mark the coastlines of the
world. As the filterwidth increases due to the noise contributions,
this sharp coastline diffuses into a muddy color inbetween. A

more sophisticated antialiasing system might mark such jump
discontinuities in the colormap and affect the filterwidth in these
areas to further inhibit this artifact.

The noise function used was adapted from Rayshade [Skinner &
Kolb, 1991], which uses cubic blending functions on a lattice of
random numbers. This particular version lends itself to efficient
hardware implementation, but the details of such an
implementation are left as future work.

Procedural hardware need not be limited to just texture.
Procedural hardware bump mapping, displacement mapping and
shading in general seem to be logical extensions of this work.
Recently, minor extensions to existing graphics pipelines for
increased shading language support have been proposed [McCool
& Heidrich, 1999]. Further extension might lead to the generation
of procedural geometry that would overcome the bandwidth
problem of transmitting polygons from the host to the graphics
processor.

5.2. Acknowledgments

This research is supported in part by Evans and Sutherland
Computer Corp., with a matching grant by the Washington
Technology Center. This research was performed in part using the
facilities of the Image Research Laboratory in the School of EECS
at Washington State University.

Bibliography

[Abram & Whitted, 1990] Abram, Gregory D. and Turner
Whitted. Building block shaders. Computer Graphics
24(4), (Proc. SIGGRAPH 90), Aug. 1990, pp. 283-288.

[Akeley, 1993] Akeley, Kurt. Reality engine graphics. Computer
Graphics 27, Annual Conference Series, (Proc.
SIGGRAPH 93), July 1993, pp. 109-116.

[Beers, et al, 1996] Beers, Andrew C., Maneesh Agrawala and
Navin Chaddha. Rendering from Compressed Textures.
Computer Graphics, Annual Conference Series, (Proc.
SIGGRAPH 96), Aug. 1996, pp. 373-378.

[Blinn, 1982] Blinn, James F., A generalization of algebraic
surface drawing ACM Transactions on Graphics 1(3),
July 1982, pp. 235-256.

[Carr & Hart, 1999] Carr, Nate and John C. Hart. APST
Antialiased Procedural Texturing Interface for OpenGL.
Proc. Western Computer Graphics Symposium. March
1999, pp. 46-55.

[Crow, 1984] Crow, Franklin C. Summed area tables for texture
mapping. Computer Graphics 18(3), (Proc. SIGGRAPH
84), July 1984, pp. 137-145.

[Ebert, 1994] Ebert, David. Animating Solid Spaces: Animating
Solid Textures. Chapter in: Texturing and Modeling: A
Procedural Approach, Ebert, D., Ed. Academic Press
Professional, Boston, 1984, pp. 165-170.

[Hanrahan & Lawson, 1990] Hanrahan, P. and J. Lawson. A
language for shading and lighting calculations.
Computer Graphics 24(4), (Proc. SIGGRAPH 90), Aug.
1990, pp. 289-298.

[Kameya & Hart, 1999] Kameya, Masaki and John C. Hart. Bit
width necessary for solid texturing hardware. Proc.
Western Computer Graphics Symposium. March 1999,
pp. 121-126.

[Molnar, et al, 1992] Molnar, Steven, John Eyles and John
Poulton. PixelFlow: High-speed rendering using image
composition. Computer Graphics 26(2), (Proc.
SIGGRAPH 92), July 1992, pp. 231-240.

[Montrym, et al, 1997] Montrym, John S., Daniel R. Baum,
David L. Dignam and Christopher J. Migdal.
InfiniteReality: A real-time graphics system. Computer
Graphics, Annual Conference Proceedings, (Proc.
SIGGRAPH 97), Aug. 1997, pp. 293-302.

[Musgrave & Mandelbrot, 1989] Musgrave, F. Kenton and Benoit
B. Mandelbrot. Natura Ex Machina. [EEE Computer
Graphics and Applications 9(1), Jan. 1989, p. 4-7.

[McCool & Heidrich, 1999] McCool, Michael D. and Wolfgang
Heidrich. Texture Shaders. Proc. Eurographics-
SIGGRAPH Graphics Hardware Workshop, Aug.
1999.

[Norton, et al., 1982] Norton, Alan, Alyn P. Rockwood and
Phillip T. Skolmoski. Clamping: A method for
antialiased textured surfaces by bandwidth limiting in
object space. Computer Graphics 16(3), (Proc.
SIGGRAPH 82), July 1982, pp. 1-8.

[Olano & Lastra, 1998] Marc Olano and Anselmo Lastra. A
Shading Language on Graphics Hardware: The
PixelFlow Shading System. Computer Graphics, Annual
Conference Proceedings, (Proc. SIGGRAPH 98), July
1998, pp. 159-168.

[Peachey, 1985] Peachey, Darwyn. R. Solid texturing of complex
surfaces. Computer Graphics 19(3), (Proc. SIGGRAPH
85), July 1985, pp. 279-286.

[Perlin, 1985] Perlin, Ken. An image synthesizer. Computer
Graphics 19(3), (Proc. SIGGRAPH 85), July 1985, pp.
287-296.

[Potmesil & Hoffert, 1989] Potmesil, Michael and Eric M.
Hoffert. The Pixel Machine: A parallel image computer.
Computer Graphics 23(3), (Proc. SIGGRAPH 89), July
1989, pp. 69-78.

[Rhoades, et al., 1992] Rhoades, John, Greg Turk, Andrew Bellm
Andrei State, Ulrich Neumann and Amitabh Varshney.
Real-Time Procedural Textures. Proc. Interactive 3-D
Graphics Workshop, 1992. pp. 95-100.

[Segal, et al, 1992] Segal, Mark, Carl Korobkin, Rolf van
Widenfelt, Jim Foran and Paul Haeberli. Fast shadows
and lighting effects using texture mapping. Computer
Graphics 26(2), (Proc. SIGGRAPH 92), July 1992, pp.
249-252.

[Skinner & Kolb, 1991] Skinner, Robert and Craig E. Kolb.
noise.c (file in the Rayshade raytracing system).

[Torborg & Kajiya, 1996] Torborg, Jay and James T. Kajiya.
Talisman: Commodity realtime 3D graphics for the PC.
Computer Graphics Annual Conference Proceedings,
(Proc. SIGGRAPH 96), Aug. 1996, pp.353-363.

[Williams, 1983] Williams, Lance. Pyramidal parametrics.
Computer Graphics 17(3), (Proc. SIGGRAPH 83), July
1983, pp. 1-11.

[Worley, 1994] Steven Worley. Practical Methods for Texture
Design: Antialiasing. Chapter in: Texturing and
Modeling: A Procedural Approach, Ebert, D., Ed.
Academic Press Professional, Boston, 1984, pp. 117-
124.

Real-Time Procedural Solid Texturing

Nathan A. Carr

John C. Hart

Department of Computer Science
University of Illinois, Urbana-Champaign

(@ (b)

(d)

Figure 1. Solid texture coordinates stored as vertex colors of a model (a) are rasterized into a texture atlas (b). A procedural
shader replaces the interpolated solid texture coordinates with colors (c), which are applied to the object using texture mapping.

Abstract

Shortly after its introduction in 1985, procedural solid texturing
became a must-have tool in the production-quality graphics of the
motion-picture industry. Now, over fifteen years later, we are
finally able to provide this feature for the real-time consumer
graphics used in videogames and virtual environments. A texture
atlas is used to create a 2-D texture map of the 3-D solid texture
coordinates for a given surface. Applying the procedural texture to
this atlas results in a view-independent procedural solid texturing
of the object.

Texture atlases are known to suffer from sampling problems and
seam artifacts. We discovered that the quality of this texturing
method is independent of the continuity and distortion of the atlas,
which have been focal points of previous atlas techniques. We
instead develop new meshed atlases that ignore continuity and
distortion in favor of a balanced distribution of as many texture
samples as possible. These alases are seam-free due to careful
attention to their rasterization in the texture map, and can be MIP-
mapped using a balanced mesh-clustering algorithm.

Techniques for fast procedural synthesis are also investigated,
using either the host processor or wth multipass graphics
processor operations on the texture map. We used these atlas and
synthesis techniques to create a real-time procedural solid texture
design system.

CR Categories: 1.3.7 [Computer Graphics] Three-Dimensional
Graphics and Realism (color, shading and texture).

Keywords: Atlas, mesh partitioning, MIP-map, multipass
rendering, procedural texturing, solid texturing, texture mapping.

1. Introduction

The concept of procedural solid texturing is well known [32][37],
and has found widespread use in graphics [6]. Solid texturing
simulates a sculpted appearance and directly generates texture
coordinates regardless of surface topology. Procedural texturing
makes solid texturing practical by computing the texture on
demand (instead of accessing a stored volumetric array), and at a

Authors’ address: Urbana, IL 61801. {nacarr, jch}@uiuc.edu.

level detail limited only by numerical precision. These features
were quickly adopted for production-quality rendering by the
entertainment industry, and became a core component of the
Renderman Shading Language [11].

With the acceleration of graphics processors outpacing the
exponential growth of general processors, there have been several
recent calls for real-time implementations of procedural shaders,
e.g. [12][38]. Real-time procedural shaders would make
videogame graphics richer, virtual environments more realistic and
modeling software more faithful to its final result. Section 2
describes previous implementations of real-time procedural
texturing and shading systems, all requiring special-purpose
graphics supercomputers or processors.

Peercy et al. [35] recently took a large step toward this goal by
developing a compiler that translated Renderman shaders into
multipass OpenGL code. While complex Renderman shaders could
not yet be rendered in real-time, this compiler showed that their
implementation on graphics accelerators was at least feasible. They
created new interactive shading language, ISL, to produce more
efficient OpenGL shaders.

Unfortunately, ISL did not introduce any new techniques for solid
texturing, supporting it instead with texture volumes. While
modern graphics accelerator boards now have enough texture
memory to store a moderate resolution volume, and some even
support texture compression, storing a 3-D dataset to produce a 2-
D surface texture is inefficient and an unnecessarily wasteful use
of texture memory. Applying procedural texturing operations to an
entire texture volume also wastes processing time.

Apodaca [1] described how the texture map can be used to store
the shading of a model. His technique shaded a mesh in world
coordinates, but stored the resulting colors in a second “reference”
copy of the mesh embedded in a 2-D texture map. The mesh could
then be later shaded by applying the exture map instead of
computing its original shading.

We can use this technique to support view-independent procedural
solid texturing. Consider a single triangle with 3-D solid texture

coordinates' s; and 2-D surface coordinates u; assigned to its
vertices x; for i = 1,2,3. Figure 1a shows such triangles, plotted in
model coordinates with color indicating their solid coordinates. We
apply a procedural solid texture to the triangle (X;,X,,X3) in three
steps. The first step rasterizes the triangle into a texture map using
its surface texture coordinates (u;,u,,u3). This rasterization
interpolates its vertices’ solid texture coordinates s; across its face.
Figure 1b shows each pixel (u,v) in the rasterization now contains
the interpolated solid texture coordinates s(u,v). The second step
executes a texturing procedure p() on these solid texture
coordinates, resulting in the color c(u,v) = p(s(u,v)) shown in
Figure 1c. This color table ¢(u,v) is a texture map that we apply to
the original triangle (x;,X;,X3) via its surface coordinates u,,
resulting in the view-independent procedural solid texturing shown
in Figure 1d.

This atlas technique was implemented as a tool to preview
procedural solid textures in recent modeling packages [2], [45]
though it suffered from sampling problems. Lapped textures [40]
also used a texture atlas to allow the lapped texture swatches to be
applied in a simple texture mapping operation, noting “the atlas
representation is more portable, but may have sampling problems.”

Section 3 describes the texture atlas in detail, and analyzes the
artifacts it can cause. Poor coverage of the texture map by the atlas
causes aliasing, whereas discontinuities in the atlas cause seams in
the textured surface. Section 4 describes new atlases that overcome
these artifacts, with atlases that cover more of the texture map and
distributing the resulting samples more evenly to reduce texture
magnification aliases. Section 4.3 describes how an atlas that can
be MIP mapped to eliminate texture minification aliases.

The use of an atlas enables procedural texturing operations to be
applied to the texture map, and Section 5 describes how this step
can be implemented efficiently on both the host and the graphics
controller. Section 6 concludes with an interactive procedural solid
texture editor, other applications of these methods and ideas for
further investigation.

2. Previous Work

There have been several implementations of al-time procedural
solid texturing over the past fifteen years, though they have either
required high-performance graphics computers or special-purpose
graphics hardware.

Procedural solid texture has been available on parallel graphics
supercomputers, such as the AT&T Pixel Machine [39] and UNC’s
Pixel Planes 5 and PixelFlow [26]. The Pixel Machine in fact was
used as a platform for exploring volumetric procedural solid
texture spaces [36].

Rhoades et al. [42] developed a specialized assembly language,
called T-code, for procedural shading on Pixel Planes 5. The T-
code interpreter included automatic differentiation to estimate the
variation of the procedure across the domain of a pixel. This
estimate of the variation was used as a filter width to antialias the
procedural texture, by averaging the range of colors the procedure
could generate within the pixel.

Olano et al. [30] implemented a real-time subset of the Renderman
shading language on Pixel Flow, including the ability to synthesize
procedural solid textures. Standard Renderman shader tools

1 . . L .
To keep these two textures straight, we will use s = (s,#,7) to indicate the solid texture
coordinates and u = (u,v) to indicate the fexture map coordinates. We will need to
assign both kinds of coordinates to the vertices of a mesh.

including automatic differentiation and clamping [28] were used to
antialias the procedural textures.

Hart et al. [14] designed a VLSI processor based around a single
function capable of generating several of the most popular
procedural solid textures. Procedural solid textures were
transmitted to this hardware as a set of parameters to the texturing
function. The derivative of the function was also implemented to
automatically antialias the output, a la [42].

Current graphics libraries such as OpenGL [44] and Direct3D [24]
support solid texturing with the management of homogeneous 3-D
texture coordinates, and recent versions of these libraries support
three-dimensional texture volumes that can be MIP-mapped to
support antialiasing.

Peercy et al. [35] developed a compiler that translated the
Renderman shading language into OpenGL source code. The
technique used multi-pass rendering and requires an OpenGL 1.2
implementation with its imaging subset, as well as the floating
point-framebuffer and pixel-feedback extensions. As mentioned in
the introduction this method depends on texture volumes for solid
texturing.

3. The Texture Atlas

A (surface) texture mapping u = ¢(x) is a function from a surface
into a compact subset of the plane called the fexture map. The
texture mapping need not be continuous, but usually consists of
piecewise continuous parts ¢() called charts. The area on the
surface in model coordinates & called the chart domain whereas
the area the domain maps to in the texture map is called the chart
image. The collection of charts that forms a texture mapping
&) = @) is called an atlas [27]. If the surface texture mapping is
one-to-one, then its inverse ¢'() is a parameterization of the
surface. Atlases often (but not always) parameterize the surface,
such that each pixel in the texture map represents a unique location
on the object surface?.

Hence parameterization methods could be used to generate atlases.
For example, MAPS [19] parameterizes a mesh of arbitrary
topological type, using a simplified version of the mesh embedded
in three-space to serve as the base domain of smoothed piecewise
barycentric parameterizations. This base mesh and the
parameterization it supports could be flattened into a 2-D texture
map, but the same flattening could also create an atlas by directly
flattening the original mesh. Texture atlases do not require the
continuity and smooth differentiability that good parameterization
strive for.

Texture atlases have strived instead to minimize the distortion of
its charts, and to minimize areas of discontinuity between chart
images. Section 3.1 shows that distortion does not affect the
quality of our method. Section 3.2 describes how discontinuities
can cause seam artifacts, but we eliminate these artifacts later in
Section 4.1. We instead offer two new measures of atlas quality:
coverage (Sec. 3.3) and relative scale (Sec. 3.4), that are used to
indicate the sampling fidelity offered by the atlas. Section 4
proposed new atlas techniques that perform well with respect to
these two new measures.

3.1 Distortion

The distortion of a texture mapping is responsible for the
deformation of a fixed image as it is mapped onto a surface.

1 topology, the atlas is used to define manifolds. In this context the atlas need not
be one-to-one and the range of its charts may overlap.

Previous techniques for creating atlases have focused on reducing
the distortion of the charts [43], either by projection [1],
deformation energy minimization [20][21][22], or interactive
placement [33][34].

Chart images are often complex polygons, and must then be
packed (without further distortion) efficiently into the texture map
to construct the atlas. Automatic packing methods for complex
polygons are improving [25], but have not yet surpassed the
abilities of human experts in this area.

Our use of a texture atlas for solid texturing is not directly affected
by chart distortion. Solid texture coordinates are properly
interpolated across the chart image in the texture map regardless of
the difference in shape between the model-coordinate and the
surface-texture-coordinate triangles. Chart distortion affects only
the direction, or “grain” of the artifacts, but not their existence, as
will be shown later in Figure 6.

3.2 Discontinuity

Texture atlases are discontinuous along the boundaries of their
charts. Texture mapping can reveal these discontinuities as a
rendering artifact known as a seam. Seams are pixels in the texture
map along the edges of charts. They appear along the mesh edges
as specks of the wrong color, either the texture map’s background
color or a color from a different part of the texture.

Previous techniques have reduced seams by maximizing the size
and connectivity of the chart images in the texture atlas. For
example, Maillot et al. [22] merged portions of the surface of
similar curvature. These partitions improved the atlas continuity,
resulting in fewer charts, though with complex boundaries. While
this method reduced seams to the complex boundaries of fewer
charts, it did not eliminate them.

Seams appear because the rasterization rules differ from texture
magnification rules. The rules of polygon scan conversion are
designed with the goal of plotting each pixel in a local polygonal
mesh neighborhood only once®. The rules for texture magnification
are designed to appropriately sample a texture when the sample
location is not the center of a pixel, usually nearest neighbor or a
higher order interpolation of the surrounding pixels.

Ed

(a) (b) (c)

Figure 2. Seams occur due to differences between texture
magnification (a) and rasterization (b), shown in red (c).

B B

A A

Figure 2a shows two triangles with integer coordinates in the
texture map. Figure 2b shows these two triangles rasterized using
the standard rules [7], with unrasterized white pixels in the
background. In this figure, the integer pixel coordinates occur at
the center of the grid cells. Hence the grid cell indicates the set of
points whose nearest neighbor is the pixel located at the cell’s
center. Figure 2b illustrates that some points in both triangles A
and B have background pixels as nearest neighbors, and some
points in triangle B have pixels rasterized as triangle A because

3 Missing pixels can result in holes or even cracks in the mesh, whereas plotting the
same pixel twice (once for each of two different polygons) can cause pixel flashing
as neighboring polygons battle for ownership of the pixel on their border.

triangle A’s pixels are their nearest neighbors. Figure 2¢ indicates
these points in red.

Higher order texture magnification, such as bilinear or bicubic can
reduce but not eliminate the effect of background pixels, and
actually eaggerate the problem along the shared edge between
triangles A and B. A common solution is to overscan the polygons
in the texture map, but surrounding all three edges of each triangle
with a one-pixel safety zone wastes valuable texture samples.

3.3 Coverage

The coverage C of an atlas measures how effectively the
parameterization uses the available pixels in the texture map. The
coverage ranges between zero and one and indicates the percentage
of the texture map covered by the image of the mesh faces

C= ZA(u,l, U M

where A() returns the area of a triangle. We assume the texture
map is a unit square.

The coverage of atlases of packed complex polygons was quite
low, covering less than half of the available texture samples in our
tests. We also implemented a simple polygon packing method that
used a single chart for each triangle. This triangle packing
performed much better than the complex polygon packing, but still
covered only 70% of the available texture samples. Since distortion
does not affect the quality of our procedural solid texturing

technique, the next section shows that the chart images of triangles
can be distorted to cover most if not all of the available texture
samples.

3.4 Relative Scale

Whereas the coverage measures how well the parameterization
utilizes texture samples, the relative scale S indicates how evenly
samples are distributed across the surface. We measure the relative
scale as the RMS of the ratio of the square root of the areas before
and after each chart of the atlas is applied

M
= ZA(leaszaxﬂ)
=

The additional summation factor computes the surface area of the
object in model space, and normalizes the relative scale so it can
be used as a measure to compare the quality of atlases across
different models. A relative scale less than one indicates that the
atlas is contracting a significant number of large triangles too
severely, whereas a relative scale greater than one indicates that
small triangles are taking up too large a portion of the texture map.

A u,,u))
= A(X,lﬁszax 3)

The relative scale of existing atlas techniques is typically less than
one half. Inefficient packing yields low coverage, such that
triangles must be scaled even smaller in order to make the complex
chart images fit into available texture space.

4. Atlases for Solid Texturing

This section describes methods for constructing texture atlases
specifically for procedural solid texturing that overcome sampling
problems and seams.

4.1 Uniform Mesh Atlases

One way to take as many samples as possible is to maximize the
coverage of texture map by the atlas. Since distortion does not
affect the quality of the atlas for our application, we choose to
deform the model triangles into a form that can be easily packed.
The uniform mesh atlas arbitrarily maps all of the triangles into a
single shape, an isosceles right triangle. These right triangles are
packed into horizontal strips and stacked vertically in the texture
map.

Figure 3 demonstrates the uniform mesh atlas. Continuity is
ignored and the texture map can be thought of as a collection of
rubber jigsaw puzzle pieces that must be stretched into an
appropriate place on the model surface.

The length of each adjacent edge of the mesh triangles is given by

L] 3)

H

where H is the horizontal resolution of a square texture map. The
floor ensures that we can plot a full row of triangle pairs. Note that
a is not an integer, but non-integer edge lengths can create
problems with seams.

Seam Elimination. Seams can be avoided by the careful
rasterization of mesh triangles. Triangles A and B have been
rasterized into the texture map as shown before. The triangles in
Figure 4b are rasterized with half pixel offsets such that no
background pixels will be accessed by the texture’s magnification
filter. Nonetheless, samples in triangle B near its hypotenuse will
still return A’s color. Overscanning the hypotenuse of triangle B
and shifting triangle A right one pixel, as shown in Figure 4c,
eliminates the seam artifact between A and B. This overscanning
solution reduces the coverage slightly, but only costs one column
of pixels for each triangle pair in a horizontal strip.

- L

B B B

A A
(a) (b) (c)

Figure 4. Standard rasterization rules disagree with texture
magnification rules (a) and (b). Overscanned polygons are
sampled correctly (c).

Since seams are eliminated, triangles can be placed in any order in
the uniform mesh atlas. If the model contains triangle strips, then
these strips can be inserted directly into the uniform mesh atlas
without overscanning, as the edge they share has appropriate pixels
on either side of it.

Figure 3. Uniform mesh atlas for a cloud textured
moon.

4.2 Non-Uniform Mesh Atlases

While the uniform mesh atlas does a good job of using available
texture samples, it distributes those samples unevenly. Object
polygons both large and small get the same number of texture
samples. The uniform mesh atlas biases the sampling of texture
space in favor of areas with small triangles. While smaller
polygons may appear in more interesting areas of the model,
geometric detail might not correlate with texture detail.

Our goal is to not only use as many samples of the texture as
possible, but to distribute those samples evenly across the model.
The non-uniform mesh atlas attempts to more evenly distribute
texture samples by varying the size of triangle chart images in the
texture map.

Area-Weighted Mesh Atlas. An obvious criterion is that larger
model triangles should receive more texture samples, and so their
image under the atlas should be larger. We implement this area-
weighted NUMA by first sorting the mesh triangles by non-
increasing area. The mesh atlas is again constructed in horizontal
strips, but the size of the triangles in the strip is weighted by the
inverse of the relative scale of the triangles in the strip. This allows
larger triangles to get more texture samples. Figure 5 demonstrates
the area-weighted atlas on a rhino model.

Figure 5: Rhino sculpted from wood and its area-weighted
non-uniform mesh atlas.

Length-Weighted Mesh Atlas. Skinny triangles occupy smaller
areas, but require extra sampling in their principal axis direction to
avoid aliases. The length-weighted NUMA uses the triangle’s

longest edge to prioritize its space utilization in the texture map.

r i ’ i - i
(@ (b) ©

Figure 6. Effects of mesh atlas sample distribution
techniques on a poorly tesselated object containing slivers:
uniform (a), area weighted (b) and length weighted (c).

Figure 6 demonstrates the appearance of artifacts from the mesh

atlases on the cross of a chess king piece. The procedural texture in
this example is a simple striped pattern. Every triangle in the
uniform mesh atlas (a) gets the same number of texture samples,
regardless of size, resulting in the jagged sampling of the textured
stripe on the left. The area-weighted NUMA reduces these aliasing
artifacts, stealing extra samples from the rest of the model’s

smaller triangles. But the sliver polygon needs more samples than
its area indicates, and the length-weighted NUMA gives the sliver
triangles the same weight as their neighbors, reducing the aliasing
completely, leaving only the artifacts of the nearest-neighbor
texture magnification filter.

Comparison. We plotted the relative scale of each triangle in the
meshed rhino model. The ideal relative scale is equal to the square
root of the surface area, and is plotted in geen. Since all of the
uniform mesh atlas’s chart image triangles are the same size, the
plot of its relative scale simply indicates the size of the triangle in
the model. Hence larger triangles are sample starved, but as Table
1 shows, a larger number of smaller triangles are receiving too
many samples.

Mesh Atlas Coverage Relative Scale
Uniform 91% 1.75
Area-Weighted 93% 0.66
Length-Weighted 93% 0.86

Table 1. Measurement of mesh atlas performance on the
rhino model.

The area-weighted mesh atlas does a much better job of
distributing the samples, and nearly complements the sampling of
the uniform mesh atlas. The area-weighted NUMA undersamples
smaller triangles because they are assigned to the remaining scraps
of the texture map, which also results in its relative scale of less
than (but closer to) one.

(@) (b)
©

Figure 7. The rhino model color coded by the relative scale
of each triangle under the uniform (a), area-weighted (b)
and length-weighted (c) atlases. Green indicates optimal

sampling, blue indicates too few samples, and red indicates

too many.

Figure 7 illustrates the difference with this weighting, increasing
the samples in the belt of skinny triangles around the rhino’s waist,
and the stretched triangles around its shoulder, by sacrificing some
of the samples in the rest of the model. The length-weighting
heuristic also improves the performance datistics, resulting in a
relative scale much closer to the goal of one.

4.3 Multiresolution Mesh Atlases

Section 4.1 described how seam artifacts were removed by making
rasterization agree with texture magnification. Texture minification
also produces artifacts, aliasing when projected texture resolution
exceeds screen resolution.

The MIP-map is a popular method for inhibiting texture
minification aliases [46]. The MIP-map creates a multiresolution
pyramid of textures, filtering the texture from full resolution in
half-resolution steps down to a single pixel. Each pixel at level / of
a MIP-map represents 4 pixels of the full resolution texture map
(at level 0).

Assume we have a uniform mesh atlas where the adjacent edge a

of each of the triangles is a power of two. Then at levels up to /, =
Ig a, some pixels from both sides of a triangle pair will combine

into a single pixel. This averaging is correct only if the triangle
pair also shares an edge in the surface mesh.

At level [, + 1, four neighboring triangle-pairs in the texture map
will be averaged together. The uniform mesh atlas cannot be MIP-
mapped at level /,, + 1 or above as there is no spatial relationship
between triangles in the atlas. We can however impose a spatial
relationship on the uniform mesh atlas that permits MIP-mapping
above level /,.

At level [, triangle pairs are each represented by a single pixel. At
level I, + 1, the result of averaging neighboring triangles pairs is a
single pixel. Hence, the mesh needs to have neighborhoods of
triangle pairs grouped together, but the grouping need not be in any
particular order.

We achieve this grouping by partitioning the surface mesh
hierarchically into a balanced quadtree. Each level of the quadtree
partitions the mesh into disjoint contiguous sections with
(approximately) the same number of faces.

We implement our face partitioning using a multiconstraint-
partitioning algorithm [18]. Such algorithms have found a wide
variety of applications in computer graphics, e.g. [9][17][19].

The face hierarchy is constructed using the dual of the mesh. The
partitioning algorithm uses edge collapses to repeatedly simplify
this dual graph, yielding a hierarchy. The “balanced first choice”
[18] heuristic is wused to balance the hierarchy during
simplification. We then optimize this graph from the top down,
exchanging subtrees to minimize the edge length of the boundaries
of the partitions. The result is demonstrated in Figure 8.

Figure 8. Levels of texture detail in the multiresolution
uniform mesh atlas.

5. Procedural Texturing onto the Atlas

The solid texture coordinates resulting from the mesh atlases
provides an efficient and direct method for applying procedural
textures to an arbitrary object. We apply procedures directly to the
texture map using the texture map containing solid texture
coordinates interpolated across the polygon faces as input,
replacing these coordinates with colors producing a texture map
that when applied yields a procedural solid texturing of the object.

Procedural textures can be generated a number of ways. We
explore two basic techniques. The first technique runs a procedure
sequentially on the host. The second technique compiles the
procedure into a multipass program executed in SIMD fashion by
the graphics controller. We will focus on the Perlin noise function
[37] as this single function is a widely used element of a large
portion of procedural textures.

5.1 Host Rasterization

The texture atlas technique allows the procedural texture to be
generated from the host. Host procedures provide the highest level
of flexibility, allowing all of the benefits of a high-level language
compiled into a broad instruction set.

Several fast host-processor methods exist for synthesizing
procedural textures. Goehring et al. [10] implemented a smooth
noise function in Intel MMX assembly language, evaluating the
function on a sparse grid and using quadratic interpolation for the
rest of the values. Kameya ef al. [14] used streaming SIMD
instructions that forward differenced a linearly interpolated noise
function for fast rasterization of procedurally textured triangles.

One could use the graphics processor to rasterize the texture atlas,
and then let the host processor replace the interpolated solid
coordinates with procedural texture colors. The main drawback to
this technique is the asymmetry of the graphics bus, which is
designed for high speed transmission from the host to the graphics
card. The channel from the graphics card to the host is very slow,
taking nearly a second to perform an OpenGL ReadPixels
command on an Intel PC AGP bus.

To overcome this bottleneck, our host-procedure implementation
uses the host to rasterize the atlas directly into the texture map.
Host rasterization provides full control over the rasterization rules
and full precision for the interpolated texture coordinates. While
the host processor is not nearly as fast as the graphics processor at
rasterization, the generation and rendering of the atlas into texture
memory is an interactive-time operation, whereas examination of
the object is a real-time operation supported completely by the
graphics card’s texture mapping hardware. Its results are shown
later in Table 3.

5.2 A Multipass Noise Algorithm

Following [15][23][35][41], we can harness the power of graphics
accelerators to generate procedural textures directly on the
graphics board.

The noise function could be implemented using a 3-D texture of
random values with a linear magnification filter. A texture atlas of
solid texture coordinates can be replaces with noise samples using
the OpenGL pixel texture extension [31].

The vertex shader programming model found in Direct3D 8.0 [24]
and the recent NVIDIA OpenGL vertex shader extension [31] can
support procedural solid texturing. In fact a Perlin noise function
has been implemented as a vertex program [29]. But a per-vertex
procedural texture will produce vertex colors that are Gouraud
interpolated across faces.

Input: solid_map with R,G,B containing s,t,r coordinates.

Initialize noise = black

solid_int = solid_map >> b

solid_intpp = solid_int + 1/(2°-1)

weight = (solid_map — (solid_int <<by)) <<b;

for (k=0;k <8; kt++) {
corner = solid_int
corner = solid_intpp with glColorMask(k&1,k&2,k&4)
randomize corner
corner *= if (k&1) then R(weight) else 1— Rweight)*
corner *= if (k&2) then Gweight) else 1— G(weight)
corner *= if (k&4) then B(weight) else 1— Bweight)
noise += corner

Output: solid noisetexture map

Figure 9. Multipass noise algorithm.

We instead implemented a per-pixel noise function using multipass
rendering onto the texture atlas. Assume the three channels (R,G,B)
of our buffers have a depth of b bits’. We will assume a fixed-point
representation with b; integer bits and b, fractional bits, b = b;+ by
The algorithm in Figure 9 computes a random value in [0,1] at the
integer lattice points, and linearly interpolates these random values
across the cells of the lattice.

SGI Implementation. We implemented the noise function in
multipass OpenGL on imaging workstations using the
glPixelTransfer and glPixelMap functions. The glPixelTransfer
function performs a per-component scale and bias, whereas
glPixelMap performs a per-component lookup. The results appear
in Table 2.

NVidia Implementation. We also implemented a noise function
for consumer-level accelerators using the NVidia chipset. Since the
NVidia driver did not accelerate glPixelTransfer and glPixelMap,
we used register combiners to shift, randomize and isolate/combine
components.

Randomization on the NVidia controller was particularly difficult,
as its driver did not accelerate logical operations like exclusive-or
on the frame buffer. Instead, we used the register combiners to
display one of two colors depending on an input color’s high bit,
then used the register combiners to shift the input color left one bit
(without overflowing and causing a clamp to one). This ended up
generating 375 passes (!). The source code for these operations can
be found on the accompanying CD-ROM.

Implementation Execution Time
SGI Solid Impact 1.3 Hz
SGI Octane 2.5Hz
NVidia GeForce 256 0.9 Hz

Table 2. Execution times for the multipass noise algorithm.

Table 2 shows the NVidia implementation did not perform as well
as the SGI implementation. Profiling the code revealed that the
main bottleneck was the time it took to save the framebuffer in a
texture, adding an average of 3 ms per pass for 354 of the passes.
OpenGL currently does not support rendering directly to texture,
and the register combiner did not directly support the blending of
its output with the destination pixel currently in the frame buffer.

4 The functions R(), G() and B() return a luminance image of the channel.

5 Framebuffers currently hold only 8 or 12 bits per channel though there is an
extension that supports 32-bit floating point, and indications that floating point
buffers may soon be supported by a larger variety of graphics hardware and drivers.

The randomization step in the SGI implementation produced white
noise using a glPixelMap lookup table of random values, whereas
the NVidia implementation blended random colors, yielding
Gaussian noise. If desired, one could redistribute the Gaussian
noise into white noise with a fixed histogram equalization step.

6. Conclusion

We have shown how the texture atlas can facilitate the real-time
application of solid procedural texturing. We showed that for this
application, the texture atlas need not be concerned with distortion
nor discontinuity, but should instead focus on sampling fidelity.
We introduced new mesh-based atlas generation schemes that
more efficiently used available texture samples, and non-uniform
variations of these meshes distributed these samples more evenly
across the object. We also used a mesh partitioning method to
construct a MIP-mappable atlas.

The texture atlas allows solid texturing procedures to be applied to
the texture map, allowing efficient multipass programming using
the accelerated operations available on the graphics controller as
they become feasible.

The system makes effective use of preprocessing. The procedural
texture needs to be resynthesized only when its parameters change,
and the texture atlas needs to be reconstructed only when the
object changes shape. Specifically, if the position of the object’s
vertices move, but the topology of the mesh remains invariant, then
the procedural solid texturing generated by this method will adhere
to the surface [1]. This is a useful property that prevents texture
“swimming,” such that for example the grain of a warped wood
plank follows the warp of the plank.

6.1 Interactive Procedural Solid Texture Design

We used the methods described in this paper to create a procedural
solid texture design system that would allow the user to load an
object and apply a procedural solid texture. This system can be
found on the accompanying CD-ROM. Since the procedural solid
texturing is applied as a standard 2-D surface texture mapping, the
design system supported full real-time observation of a
procedurally solid textured object. Using the techniques of Section
4, the object did not suffer from any seam artifacts, and aliasing
was reduced by making good use of the available texture samples.

We also allowed the user to interactively change the procedural
solid texturing parameters. Using the techniques described in
Section 5.1, we were able to support interactive-rate feedback to
the user, such that the user could observe the result of a parameter
on the procedural solid texture while dragging a slider.

The software procedural texture renderer simultaneously rasterized
the texture atlas into texture memory and applied the texturing
procedure to the texture atlas. We increased the responsiveness of
our system by having this renderer render a lower resolution
interpolated version of the atlas during manipulation, and replace it
with a higher resolution version at rest. The rendering speed of this
system is shown in Table 3.

Noise Octaves Atlas Res. Procedural Synthesis Speed
1 256° 9.09 Hz (18 Hz)
1 512° 2.56 Hz (4.55 Hz)
1 1024° 0.72 Hz (1.30 Hz)
4 256° 6.25 Hz (10 Hz)
4 512* 1.82 Hz (3.03 Hz)
4 1024° 0.40 Hz (0.76 Hz)

Table 3. Execution times for procedural texture synthesis
into the texture atlas. Parenthetic times measure lower

resolution synthesis during interaction.

6.2 Applications

We have focused this paper on the application of real-time
procedural solid texturing, though the techniques described appear
to impact other areas as well.

Solid Texture Encapsulation. Unlike surface texture coordinates,
solid texture coordinates are not uniformly implemented by
graphics file formats. Using surface texture of a solid texture
allows the texture coordinates to be more robustly specified in
object files and also allows the solid texture to be included as a
more compact texture map image instead of a wasteful 3-D solid
texture array.

3-D Painting. The meshed atlas techniques can also be used to
support 3D painting ato surfaces [13]. The atlas provides an
automatic parameterization. The discontinuities of the
parameterization do not impact painting as the texture atlas
maintains a per face correspondence between the surface and the
texture map. The meshed atlas techniques presented in Section 4
also improve surface painting by using as many texture samples as
possible distributed evenly across the surface.

Normal Maps. The normal map [3][8] is a texture map whose
pixels hold a surface normal instead of a color. Normal maps are
used for real-time per-pixel bump mapping using dot-product
texture combiners found in Direct3D and extensions of OpenGL.
The meshed atlas generation techniques can be used to create well-
sampled normal maps since normal maps do not require continuity
between faces.

Real-Time Shading Languages. Recent real time shading
languages [35][41] have been developed to support procedural
shaders, including texturing and lighting, by converting shader
descriptions into multipass graphics library routines. In particular,
Proudfoot et al. [41] focuses on the difference between per object,
per vertex and per fragment processes in real-time shaders. The
texture atlas supports additional categories of view-dependent and
view-independent processes. View dependent processes utilize
multipass operations to the framebuffer, whereas view independent
processes utilize multipass operations to the texture map, ala
Section 5.2. The results of view independent processes can be
stored and accessed directly from the texture map, accelerating the
rendering of real time shading language shaders.

6.3 Future Work

While this work achieved our goal of real-time procedural solid
texturing, it has also inspired several directions for further
improvement.

Direct Manipulation of Procedural Textures. The interactive
procedural solid texture design system is a first step. Another step
would be to allow the sliders to be bypassed, supporting direct
manipulation of procedural textures. The user could drag a texture
feature to a desired location and have the software automatically
reconfigure the parameters appropriately.

Preservation of Mesh Structure. The mesh atlases do not
preserve the object’s original mesh structure, and our mesh atlas
processing program outputs multiple copies of shared mesh
vertices with different surface texture coordinates. This increases
the size of the model description files, and may cause the resulting
models to render more slowly. Preservation of mesh structure, or at
least triangle strips, would be a useful addition to this stage of the
process.

Higher-Order Texture Magnification. Section 4.1 described the
special overscanning measures taken during rasterization of the
texture atlas to eliminate seam artifacts. This overscanning works
when a nearest neighbor texture magnification filter is used. A

6-17

linear texture magnification filter would make the textures appear
less blocky, but will require overscanning by one pixel along all
edges reduces the number of available samples on polygon faces
creating additional seldom used samples on polygon edges.

Atlas Compression. The texture atlas resembles the codebook
used in vector quantization. The number of faces in the atlas could
be reduced by allowing the atlas to no longer be one-to-one, and to
let triangles with similar procedural texture features to map to the
same location in the texture atlas. This kind of atlas compression
would increase the number of available texture samples with larger
chart images in the texture atlas.

6.4 Acknowledgments

This research was funded in part by the Evans & Sutherland
Computer Corp. overseen by Peter K. Doenges. The research was
performed using facilities at both Washington State University and
the University of Illinois. Jerome Maillot was instrumental in
showing us the state of the art in this area, including
Alias|Wavefront’s work. Pat Hanrahan observed that the UMA
biases the MIP map in favor of smaller triangles.

References

[11

[11

[2]

[31

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Apodaca, A.A. Advanced Renderman: Creating CGI for Motion Pictures.
Morgan Jaufmannm 1999. See also: Renderman Ticks Everyone Should
Know, in SIGGRAPH 98 or SIGGRAPH 99 Advanced Renderman Course
Notes.

Bennis, C. J Vezien, and G. Iglesias. Piecewise surface flattening for non-
distorted texture mapping. Proc. SIGGRAPH 91, July 1991, pp. 237-246.

Brinsmead, D. Convert solid texture. Software component of Alias/Wavefront
Power Animator 5, 1993.

Cohen, J., M. Olano and D. Manocha. Appearance-Preserving Simplification.
Proc. SIGGRAPH 98, July 1998, pp. 115-122.

Crow, F.C. Summed area tables for texture mapping.
18(3), (Proc. SIGGRAPH 84), July 1984, pp. 137-145.

Computer Graphics

DoCarmo, M. Differential Geometry of Curves and Surfaces. Prentice-Hall,
1976.

Ebert, D., F.K. Musgrave, D. Peachey, K. Perlin and S. Worley. Texturing and
Modeling: A Procedural Approach, Academic Press.1994.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes. Computer Graphics,
Principles and Practice, Second Edition, Addison-Wesley, 1990.

Fournier, A. Normal distribution functions and multiple surfaces. Graphics
Interface '92 Workshop on Local [llumination, May 1992, pp. 45-52.

Garland, M., A. Willmott and P.S. Heckbert. Hierarchical face clustering on
polygonal surfaces. Proc. Interactive 3D Graphics, March 2001, To appear.
Goehring, D. and O. Gerlitz. Advanced procedural texturing using MMX
technology. Intel MMX Technology Application Note, Oct. 1997.
http://developer.intel.com/software/idap/
resources/technical_collateral/mmx/proctex2.htm

Hanrahan, P. and J. Lawson. A language for shading and lighting calculations.
Computer Graphics 24(4), (Proc. SIGGRAPH 90), Aug. 1990, pp. 289-298.

Eurographics / SIGGRAPH
Aug. 1999.

Hanrahan, P. Procedural shading (keynote).
Workshop on Graphics Hardware,

http://graphics.standford.edu/hanrahan/talks/rts1/slides.

Hanrahan, P. and P.E. Haeberli. Direct WYSIWYG Painting and Texturing on
3D Shapes, Computer Graphics 24 (4), (Proc. SIGGRAPH 90), Aug. 1990, pp.
215-223.

Hart, J. C., N. Carr, M. Kameya, S. A. Tibbits, and T.J Colemen. Antialiased
parameterized solid texturing simplified for consumer-level hardware
implementation. 1999 SIGGRAPH/Eurographics Workshop on Graphics
Hardware, Aug. 1999, pp. 45-53.

Heidrich, W. and H-P. Seidel. Realistic hardware-accelerated shading and
lighting. Proc. SIGGRAPH 99, Aug. 1999, pp. 171-178.

Kameya, M. and J.C. Hart. Bresenham noise. SIGGRAPH 2000 Conference
Abstracts and Applications , July 2000.

Karni, Z. and C. Gotsman. Spectral compression of mesh geometry. Proc.
SIGGRAPH 2000, July 2000, pp. 279-286.

Karypis, G. and V. Kumar. Multilevel algorithms for multi-constraint graph
partitioning. Proc. Supercomputing 98, Nov. 1998.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[30]

[31]

[32]

[33]

[34]

[35]

[40]

[41]

[42]

[47]

Lee, AW.F., W. Sweldens, P. Schroder, L. Cowsar, D. Dobkin. MAPS:
Multiresolution Adaptive Parameterization of Surfaces. Proc. SIGGRAPH 98,
July 1998, pp. 95-104.

Levy, B. and J.L. Mallet. Non-distorted texture mapping for sheared
triangulated meshes. Proc. SIGGRAPH 98, July 1998, pp. 343-352.

Ma, S. and H. Lin. Optimal texture mapping. Proc. Eurographics '88, Sept.
1988, pp. 421-428.

Maillot, J., H. Yahia and A. Verroust.
SIGGRAPH 93, Aug. 1993, pp. 27-34.

McCool, M.C. and W. Heidrich. Texture Shaders. 1999
SIGGRAPH/Eurographics Workshop on Graphics Hardware, Aug. 1999, pp.
117-126.

Microsoft Corp. Direct3D 8.0
http://www.msdn.microsoft.com/directx.

Interactive texture mapping. Proc.

specification. Available at:

Milenkovic, V.J. Rotational polygon overlap minimization and compaction.
Computational Geometry: Theory and Applications 10, 1998, pp. 305-318.
Molnar, S., I. Eyles, and J. Poulton. PixelFlow: High-speed rendering using
image composition. Computer Graphics 26(2), Proc. SIGGRAPH 92), July
1992, pp. 231-240.

Munkres, J.R. Topology; A First Course. Prentice Hall, 1974.

Norton, A., A.P. Rockwood, and P.T. Skolmoski. Clamping: A method of
antialiasing textured surfaces by bandwidth limiting in object space. Computer

Graphics 16(3), (Proc. SIGGRAPH 82), July 1982, pp. 1-8.

NVidia Corp. Noise, component of the NVEffectsBrowser. Available at:
http://www.nvidia.com/developer.

Olano, M. and A. Lastra. A shading language on graphics hardware: The
PixelFlow shading system. Proc. SIGGRAPH 98, July 1998, pp. 159-168.
OpenGL Architecture Review Board. OpenGL Extension Registry. Available
at: http://oss.sgi.com/projects/ogl -sample/registry/

Peachey, D.R. Solid texturing of complex surfaces. Computer Graphics 19(3),
July 1985, pp. 279-286.

Pedersen, H.K. Decorating implicit surfaces. Proc. SIGGRAPH 95, Aug. 1995,
pp. 291-300.

Pedersen, H.K. A framework for interactive texturing operations on curved
surfaces. Proc. SIGGRAPH 96, Aug. 1996, pp. 295-302.

Peercy, M.S., M. Olano, J. Airey and P.J. Ungar. Interactive multi-pass
programmable shading, Proc. SIGGRAPH 2000, July 2000, pp. 425-432.

Perlin, K and E.M. Hoffert.
1989, pp. 253-262.

Hypertexture. Computer Graphics 23(3), July

Perlin, K. An image synthesizer.
287-296.

Computer Graphics 19(3). July 1985, pp.

Pixar Animation Studios. Future requirements for graphics hardware. Memo,
12 April 1999.

Potmesil, M., and E.M. Hoffert. The Pixel Machine: A parallel image computer.
Computer Graphics 23(3), (Proceedings of SIGGRAPH 89), July 1989, pp. 69-
78.

Praun, E., A. Finkelstein and H. Hoppe. Lapped Textures, Proc. SIGGRAPH
2000, July 2000, pp. 465470.

Proudfoot, K., W.R. Mark and Pat Hanrahan. A framework for real-time
programmable shading with flexible vertex and fragment processing.
Manuscript, Jan. 2000. See also: http://graphics.stanford.edu/projects/shading.
Rhoades, J., G. Turk, A. Bell, U. Neumann, and A. Varshney. Real-time

procedural textures. 1992 Symposium on Interactive 3D Graphics 25(2), March
1992, pp 95-100.

Samek, M. Texture mapping and distortion in digital graphics.
Computer 2(5), 1986, pp. 313-320.

Segal, M. and K. Akeley. The OpenGL Graphics System: A Specification,
Version 1.2.1. Available at: http://www.opengl.org/.

The Visual

Thorne, C. Convert solid texture. Software component of Alias/Wavefront
Maya 1,1997.

Williams, L. Pyramidal parametrics. Computer Graphics 17(3), July 1983, pp.
1-11, Proc. SIGGRAPH 83.

Wyvill G., B. Wyvill, and C. McPheeters. Solid texturing of soft objects. IEEE
Computer Graphics and Applications 7(4), Dec. 1987, pp. 20-26.

Perlin Noise Pixel Shaders

John C. Hart
University of lllinois, Urbana-Champaign

Abstract

While working on a method for supporting real-time procedural
solid texturing, we developed a general purpose multipass pixel
shader to generate the Perlin noise function. We implemented
this algorithm on SGI workstations using accelerated OpenGL
PixelMap and PixelTransfer operations, achieving a rate of
2.5 Hz for a 256x256 image. We also implemented the noise
algorithm on the NVidia GeForce2 using register combiners.
Our register combiner implementation required 375 passes, but
ran at 1.3 Hz. This exercise illustrated a variety of abilities and
shortcomings of current graphics hardware. The paper concludes
with an exploration of directions for expanding pixel shading
hardware to further support iterative multipass pixel-shader
applications.

Keywords: Pixel shaders, Perlin noise function, hardware
shading, register combiners.

1. Introduction

The concept of procedural shading is well known [17][19], and
has found widespread use in graphics [3]. Procedural shading
computes arbitrary lighting and texture models on demand.
Procedural textures efficiently support high resolution, non-
repeating features indexed by three-dimensional solid texture
coordinates. These features were quickly adopted for
production-quality rendering by the entertainment industry, and
became a core component of the Renderman Shading
Language [5].

With the acceleration of graphics processors outpacing the
exponential growth of general processors, there have been
several recent calls for real-time implementations of procedural
shaders, e.g. [6][20]. Real-time procedural shading makes
videogames richer, virtual environments more realistic and
modeling software more faithful to its final result. Real-time
procedural texturing, in particular, allows modelers to use solid
textures to seamlessly simulate sculptures of wood and stone. It
yields complex animated environments with billowing clouds
and flickering fires. Designers and users can interactively
synthesize and investigate new procedural worlds that seem

Contact info: Dept. of Computer Science, 1304 W. Springfield
Ave., Urbana, IL 61801, (217) 333-8740, jch@cs.uiuc.edu.

vaguely familiar to our own but with features unique to
themselves.

Several have researched techniques for supporting procedural
shading with real-time graphics hardware [15][18][21][22].
These shading methods reorganize the architecture of the
graphics API to suit the needs of procedural shading, applying
API components to tasks for which they were not originally
designed [8][11].

One such technique supports real-time procedural solid texturing
[2] by using the texture map to store the shading of an object [1].
The technique maintains a texture atlas that maps triangles from
a surface mesh into a non-overlapping array in texture memory.
The triangles are plotted in texture memory using their solid
texture coordinates as vertex colors. Rasterization then
interpolates solid texture coordinates across their faces in the
texture map. A procedural texturing pass replaces the solid
texture coordinates in the texture map with the procedural
texture color. Finally, this color is reapplied to the object surface
via standard texture mapping. The result is a view-independent
procedural solid texturing of the object.

One of the most common components of a procedural shading
system is the Perlin noise function [19], a correlated three-
dimensional field of uniform random values. This versatile
function provides a deterministic random function whose
bandwidth can be controlled to inhibit aliasing. Moreover, l/fﬁ
sums of noise functions can be used to form turbulence and
other fractal structures whose statistics can be set to match those
of various kinds of natural phenomena.

(@) (b)
Figure 1. Perlin noise function (a) and a 1/f'sum (b).

We integrated the Perlin noise function into our real-time
procedural solid texturing system in a variety of different ways,
both as a CPU process and as a GPU process. This paper
describes an algorithm for implementing the Perlin noise
function as a multipass pixel shader. It also analyzes this noise
implementation on a variety of systems. We used the available
accelerated implementations of the OpenGL API and its device-
dependent extensions on two SGI systems and an NVidia
GeForce2. The paper concludes with suggestions for further

hardware accelerator development that would facilitate faster
implementations of the Perlin noise function as well as a broader
variety of texturing procedures.

2. Previous work

Because the Perlin noise function has become a ubiquitous but
expensive tool in texture synthesis, it has been implemented in
highly optimized forms on a variety of general and special
purpose platforms.

Several fast host-processor methods exist for synthesizing Perlin
noise. Goehring et al. [4] implemented a smooth noise function
in Intel MMX assembly language, evaluating the function on a
sparse grid and using quadratic interpolation for the rest of the
values. Kameya et al. [10] used streaming SIMD instructions
that forward differenced a linearly interpolated noise function
for fast rasterization of procedurally textured triangles.

One can also generate solid noise with a 3-D texture array of
random values [13], using hardware trilinear interpolation to
correlate the random lattice values stored in the volumetric
texture. Fractal turbulence functions can be created using
multitexture/multipass modulate and sum operations. A texture
atlas of solid texture coordinates would then be replaced with
noise samples using the OpenGL pixel texture extension, ala [9].

The vertex-shader programming model found in Direct3D 8.0
[12] and the recent NVIDIA OpenGL vertex shader extension
[16] can support procedural solid texturing. A Perlin noise
function has been implemented as a vertex program [14]. But a
per-vertex procedural texture produces vertex colors that are
Gouraud interpolated across faces, such that the frequency of the
noise function must be at, or less than half, the frequency of the
mesh vertices. This would severely restrict the use of turbulence
resulting from 1/f sums of noise. Hence the Perlin noise vertex
shader is limited to low-frequency displacement mapping or
other noise effects that can be mesh frequency bound.

Our favorite implementation of the Perlin noise function is from
the Rayshade ray tracer [24]. This implementation created its
own pseudorandom numbers by hashing integer solid texture

coordinates with a scalar function
Hash3d(i,j,k), then interpolated these
random values with a simple smooth cubic
interpolant SCURVE(u)=3u> — 2’ to

SCURVE(x)

yield the final result.
Given solid texture coordinates s,tr, the Rayshade noise
function effectively returned noise as the value

1

Y.} Hash3d(s J+i.[¢]+ 7.7 J+ Rywis.iyw(e, jywer. k)

1
j=0 i=0

M_

il
=3

where
w(s,i) = SCURVE(s - LsJ) (1-SCURVE(s - Ls)"

is a weighting function. Hence, the noise function returns a
weighted sum of the random values at the eight corners of the
integer lattice cube containing s,z,r.

(@) (b)

Figure 2. Result of the Rayshade implementation of the
Perlin noise function, using cubic interpolation (a) and
linear interpolation (b) of corner lattice random values.

Figure 2 demonstrates the result of the Rayshade
implementation of the Perlin noise function. The random values
result from the drand48() function of the standard C math
library. Noise is defined on an integer coordinate lattice, which
results in the strong horizontal and vertical correlation.

We will use this sample as a reference to compare our pixel-
shader implementations of the Perlin noise function. The
average brightness of the (s,t) slice of the noise is due to the
fixed r coordinate. This average intensity will differ from across
implementations, resulting in variations in brightness for a given
(s,t) slice of the three-dimensional noise field.

3. A Multipass Noise Algorithm

We based our real-time implementation of the Perlin noise
function on the concise Rayshade implementation. We
implemented a per-pixel noise function using multipass
rendering onto a texture atlas initialized with solid texture
coordinates stored as pixel colors.

The Perlin noise function is defined on a field of real values,
where the integer subset of its domain defines the base
frequency of the noise. Implementation of the noise function
requires coordinates s,t,r to range over multiple integers, though
color components only range over [0,1]. Hence, given three
channels (R,G,B) each with a depth of b bits', we use a fixed-
point representation with b; integer bits and b, fractional bits, b =
b+ by

Following the form of the Rayshade noise implementation, the
algorithm in Figure 3 computes a random value in [0,1] at the
integer lattice points, and linearly interpolates these random
values across the cells of the lattice.

! Framebuffers currently hold only 8 or 12 bits per channel though there is an
extension that supports 32-bit floating point, and indications that floating point
buffers may soon be supported by a larger variety of graphics hardware and
drivers.

Input: 2-D texture solid_map with R,G,B containing s,t,r

coordinates.

Initialize texture noise = black

texture solid_int = solid_map >> by

texture solid_intpp = solid_int + 1/(2"-1)

texture weight = (solid_map — (solid_int << by)) << b;

for (k=0; k < 8; k++) {
texture corner = solid_int
overwrite corner = solid_intpp with glColorMask(k&1,k&2,k&4)
randomize corner
corner *= if (k&1) then R(weight) else 1 — R(weight)2
corner *= if (k&2) then G(weight) else 1 — G(weight)
corner *= if (k&4) then B(weight) else 1 — B(weight)
noise += corner

Output: solid noise texture map

Figure 3. Multipass noise algorithm.

The input to the algorithm is an image solid_map whose R,G.B
colors consist of solid texture coordinates. The first half of the
algorithm decomposes solid_map into its integer part solid_int
shifted right b, times and a fractional part weight shifted left b;
times.

@

(b) ©

Figure 4. Solid texture coordinates solid_map (a),
tex_int shifted left by b,(b) and weight (fractional part
shifted left by b)) (c).

Figure 4 shows a sample texture map as a plane of two-
dimensional solid texture coordinates spanned by s and 7. We set
b, = 4 bits. The solid texture coordinates s,z,r range from
(0.0,0.0,0.0) to (15.9375,15.9375,0.0) and are represented in the
solid texture coordinate texture map Figure 4(a) with RGB
colors from (0,0,0) to (1,1,0). Internally in the 24bpp
framebuffer, these RGB colors range from (0,0,0) to
(255,255,0). These coordinates are shifted right by b, to form
tex_int, which is shown Figure 4(b) shifted left by b, to increase
contrast and brightness. Subtracting (b) from (a) leaves tex_frac,
which is shifted left by b, to create a normalized weight function
Figure 4(c).

The color (R,G,B) of each pixel (x,y) in solid_map corresponds
to a solid texture point (s=R,/=G,r=B) that falls within some
lattice cell. The corner of this cell is given by the coordinates in
the corresponding pixel (x,y) stored in solid_int. The opposite
corner of this cell is found in the corresponding pixel in
solid_intpp (whose colors are increments of those in solid_int).

Each of the eight corners of the cell can be found by
combinations of the coordinates in solid_int and solid_intpp.
The second half of the algorithm iterates over all eight corners,
creating a random value indexed by the integer value at that
corner. These random values are weighted by the fractional
portion of the solid texture coordinates found in weight or its
additive inverse. Summing the products of these weights for
each of the eight corners performs a trilinear interpolation of the

2 The functions R(), G() and B() return a luminance image of the corresponding
channel.

random values at the corners, resulting in result of the noise
function.

We will spend the next two sections implementing this
algorithm using the available accelerated features of two
different graphics architectures. These implementations are each
divided into two sections, on implementing the logical shift
operations needed for the first half of the algorithm, and the
random value synthesis needed for the second half.

4. SGI Implementation
The SGI graphics accelerators have focused on high-end real-
time rendering for the scientific visualization and entertainment
production communities. Hence accelerated features have
included scientific imaging functions that support algebraic and
lookup-table operations on pixels.

We focused our implementation on low end and midline SGI
workstations, which are commonly deployed for digital content
creation and design in both the videogame and animation
communities.

4.1 PixelTransfer and PixelMap
We implemented the noise function in multipass OpenGL on
SGI workstations using accelerated PixelTransfer’ and PixelMap
functions. The PixelTransfer function performs a per-component
scale and bias, whereas PixelMap performs a per-component
lookup into a predefined table of values.

We defined an assembly language of useful PixelTransfer
functions. Specifically, the function setPixelTransfer(a,b) sets
OpenGL to perform an ax + b operation during the next image
transfer operation, where x represents each component of the
RGBA color. The function setPixelMap(table) uses PixelMap to
replace colors channels with their corresponding entries in a
lookup table. We also defined a blendtex(i) operation that draws
the texture image corresponding to texture index i. The
instruction savetex(i) saves the current framebuffer as texture
image i.

Unlike the previous section, the SGI implementation begins with
three luminance images tex_s, tex_t and tex_r instead of a
single RGB image solid_map. We could perform all of the
decompositions on a single texture, but we would later need to
break its red, green and blue channels into individual luminance
textures, and we found it impossible to perform this efficiently
with the OpenGL extension set available to low-end and midline
SGI workstations that lacked the color_matrix extension.

(b) ©

Figure 5. RGB image weight (a) is equal to (1,0,0) *
luminance image tex_s (b) + (0,1,0) * luminance image
tex_t (c) + (0,0,1) * luminance image tex_r (not
shown).

@

3 Following the convention of the OpenGL ARB, we avoid the use of the “gl”
prefix for functions and the “GL_" prefix for tokens when describing elements
of the OpenGL API.

4.2 Logical Shift Operations

The task of decomposing a texture map of fixed point solid
texture coordinates into integer and fractional textures used
PixelTransfer multiplication to achieve shifting operations. We
defined an integer shift = 1 << b. We modulated the texture by
shift to perform a logical shift left by b, and by 1/shift to
perform a logical shift right. (Some hardware required us to
round instead of truncate, which was performed by a
PixelTransfer bias of -0.5/255.0.) We also defined fracshift as
255.0/((1 << by) - 1). This allowed us to scale our fractional
portions into normalized weights.

The following code fragment demonstrates the decomposition of
the s coordinate. Similar decompositions need to be performed
on tex_t and tex_r as well.

/I shift s right to remove fractional part, save as si
blendtex(tex_s);

setPixelTransfer(1.0/shift, 0.0 /* or —0.5/255.0 */);
savetex(tex_si);

resetPixelTransfer();

/I shift si back left

blendtex(tex_si);
setPixelTransfer(shift, 0.0);
CopyPixels(0,0,HRES,VRES,COLOR);
resetPixelTransfer();

/I subtract si (floor of s) from s to get fractional part of s
Enable(BLEND);

BlendEquation(SUBTRACT);

BlendFunc(1, 1);

blendtex(tex_s);

Disable(BLEND);

/I scale fractional part into normalized weight in [0,1]
setPixelTransfer(fracshift, 0.0);

savetex(tex_sf);
resetPixelTransfer();

4.3 Random Value Synthesis

We implemented randomization using a lookup table. This
lookup table was accessed using the accelerated PixelMap
OpenGL function. Recall the value k ranges from 0 to 7
denoting the current corner. The following code fragment
synthesizes a random field based on the s coordinate.

/I tex_sin = random(si) or random(si++)
blendtex(tex_si);

setPixelTransferf(1.0, (k&1) ? 1.0/255.0 : 0.0);
setPixelMap(sran);

savetex(tex_sin);

Similar code fragments apply to the ¢ and r coordinates, using
(k&2) and (k&4) in the PixelTransfer, respectively. At this point
tex_sin, tex_tin and tex_rin contain random values indexed by
the s,t,r values at the kth corner of the cell. The following code
fragment combines these three random values into a single
random value.

/I now tex_sin, tex_tin and tex_rin are random
// add them up into a single random number*
blendtex(tex_sin);

Enable(BLEND); BlendFunc(ONE,ONE);
blendtex(tex_tin);

blendtex(tex_rin);

Disable(BLEND);

This combination of random values is highly correlated due to
the componentwise combination of random values. We reduce
this correlation with an additional randomization pass.

/I one more randomization (in place)
setPixelMap(nran);
CopyPixels(0,0,HRES,VRES,COLOR);
resetPixelTransfer();

(a) (b) (©) (d)

Figure 6. The sum of random numbers indexed by s (a).
and ¢ (b) is highly correlated (c). This correlation is
reduced by indexing into a final randomization (d).

The random number tables sran, tran and rran are uniform
random number distributions over the range [0,1/3]. These three
random values are added to form the final distribution, which is
slightly non-uniform and heavily coordinate correlated, as
shown in Figure 6(c). An additional randomization reduces this
correlation as shown in Figure 6(d).

(@ (b)

Figure 7. The random values at integer lattice locations
for corners (s t)) (@), (LsJ+1Lt]) (b), (LslLt}+1) (c)
and (Ls+1.Lth1) ().
Figure 7 shows the random values generated at the four corners

of the lattice. Note that in this example these are all translates of
each other.

(d)

The random value is then weighted by the fractional part of the
original texture coordinates s,t,r. Note that we have broken out
the original RGB image weight from the previous section into
three luminance images tex_sf, tex_tf and tex_rf. We also use
the built-in additive complement blending operation to invert the
weight appropriately depending on the cell corner.

/I displayed texture now random value at corner k
/I weight this contribution by fractional parts of s,t,r
Enable(BLEND);

BlendFunc(0, (k&1) ? SRC : 1 - SRC);
blendtex(tex_sf);

blendFunc(0, (k&2) ? SRC : 1 - SRC);
blendtex(tex_tf);

BlendFunc(0, (k&4) ? SRC : 1 - SRC);
blendtex(tex_rf);

4 Note the addition of the component random values introduces a slight Gaussian
bias to the resulting noise. This could be eliminated if an accelerated exclusive-
or blending mode was available.

(@ (b) © (d)
Figure 8. Random values scaled by the weight functions

(1 - tex_sf)(1-tex_tf) (a), tex_sf(1-tex_tf) (b), (1-
tex_sftex_tf (c) and tex_sf tex_tf (d).

Figure 8 shows the random values at the corners (Figure 7)
scaled by the product of weighting functions tex_sf and tex_tf.
These weighting functions are luminance textures corresponding
to the individual channels of Figure 4(c), such that
weight = (tex_sf, tex_{f, tex_rf).

The resulting weighted random value corresponding to the
current corner is then added into a running total, as show in the
following fragment.

/I add noise component into noise sum
BlendFunc(1,1);

blendtex(tex_noise);

Disable(BLEND);

/I keep track of sum
savetex(tex_noise);

The texture tex_noise is initialized to black. After all eight
corners have been visited, tex_noise contains the final noise
values corresponding to the solid texture coordinates in the input
luminance images tex_s, tex_t and tex_r.

Figure 9. Noise function resulting from the sum of
Figure 8 (a-d).

4.4 Results

Figure 9 shows the final noise function resulting from summing
the images in Figure 8. The correlation from Figure 6(c) was
reduced by the randomization in Figure 6(d) but is still evident,
particularly in the final interpolated version, as strong horizontal
and vertical tendencies in the noise. However, this correlation is
also found in the reference noise implementation in Figure 2,
and is primarily due to the integer lattice of noise values.

We implemented this algorithm at a resolution of 256> on a SGI
Solid Impact, a SGI Octane, and an NVidia GeForce2. The SGI
workstations are designed for advanced imaging applications
and have hardware accelerated PixelTransfer and PixelMap
operations whereas the NVidia card designed for mainstream
consumer applications does not. The execution times are given
in Table 1.

Implementation Execution Time (Rate)
SGI Octane 0.4sec. (2.5Hz)
SGI Solid Impact 0.75 sec. (1.3 Hz)
NVidia GeForce 256 5 sec. (0.2 Hz)

Table 1. Execution results for the multipass noise
algorithm.

5. NVidia Implementation

We also implemented a noise function for consumer-level
accelerators using the NVidia chipset. The NVidia products
have been designed to accelerate commodity personal computer
graphics, especially videogames. Hence the drivers did not
accelerate PixelTransfer and PixelMap. We instead used register
combiners to shift, randomize and isolate/combine components.

5.1 Register Combiners

Register combiners support very powerful per-pixel operations
by combining multitextured lookups in a variety of manners.
They support the addition, subtraction and component-wise
multiplication (and even a dot product) of RGB vectors. They
also support conditional operations based on the high-bit of the
alpha channel of one of the inputs. They support signed byte
arithmetic with a full 9 bits per channel, though can only store 8
bit results. They also provide several mapping functions for
signed/unsigned conversion, and the ability to modulate output
values by one-half, two and four.

The Direct3D 8.0 specification includes a register-combiner
based assembly language [12]. However, our implementation
sought to squeeze the best possible performance out of the
NVidia chipset. We chose instead to use the OpenGL register
combiner extensions, which provide complete, though device
dependent, access to the graphics accelerator.

Figure 10 illustrates the register combiner functionality used in
this paper. The register combiner has four inputs A,B,C,D that
can be any combination of the incoming fragment, a pixel from
multitexture unit 0 or 1, and the contents of a scratch register
called Spare0. The constants zero and one (via a special
unsigned invert operation) can also be used as inputs, and other
constant values can also be loaded via special registers.

The outputs of the register combiners include A*B, C*D, A*B +
C*D and the special A*B | C*D. This latter output yields A*B if
the alpha component of the register Spare0 is less than 0.5,
otherwise the output yields C*D. These outputs can also be
optionally scaled by ', 2 or 4. For this paper, it is safe to assume
the output is always contained in the register Spare0. The
register combiner has separate but comparable functions for the
RGB values and the alpha values of the inputs and registers.

incoming Tex0| | Tex1
fragment

e

T T

A*B C'DA*B+C'D (A*B | C*D)

I

Multiplexor, x1/2, x2, x4

outgoing

Figure 10. Partial block diagram of the register combiner
functionality used in this paper.

There can be any number of register combiners that form a
pipeline, using the temporary registers such as Spare0 to hold
data between stages. The GeForce2 used to implement the pixel
shaders in this paper contains two register combiners which
allow two register combiner operations per pass. The GeForce3
is expected to have eight register combiners.

5.2 Logical Shift Operations

In order to perform the decomposition of the input solid texture
coordinate image into integer and fractional components, we
developed a logical shift left register routine. This routine used
the modulate-by-two output mapping, but this causes values
greater than one half to clamp to one. We avoided this overflow
by using the conditional mode of the register combiners. The
following example sets up the register combiners to perform
such a logical shift left on a luminance value (R=G=B) in
multitexture unit 0.

/I first stage

/I spare[a] = textureO[b]

Ala] = textureQ[b]

Bla] = 1 (zero with unsigned_invert)

spareQ[o] = Alo]*B[a]

/I spare0 rgb = texture0 less its high bit (or zero if less than %)
Alrgb] = textureO[rgb]

B[rgb] = white (zero with unsigned_invert)

spare0[rgb] = A[rgb]*B[rgb] - 0.5 // via bias_by_negative_one_half
/I second stage

/I spare0 rgb = (spare0[a] < 0.5 ? textureO[rgb] : spare0[rgb]) << 1
Alrgb] = textureO[rgb]

Bl[rgb] = white
Cl[rgb] = spare0[rgb]
D = white

spare0[rgb] = 2*(spare0[o]<0.5 ? A[rgb]*B[rgb] : C[rgb]*D[rgb])

We could also generate a register combiner to perform a logical
shift right using the scale_by_one_half mode, but found it was
much simpler to perform a multitextured modulate-mode blend
with a texture consisting of the single pixel containing the RGB
color (0.5,0.5,0.5).

5.3 Random Value Synthesis
Randomization on the NVidia controller was particularly
difficult. The driver (and presumably the hardware) accelerated

neither pixel transfer/mapping operations, nor logical operations
like exclusive-or.

We instead implemented a register combiner random number
generator by shifting each of the components of the integer
values of the coordinates left one bit at a time. All four bits of
each of the three components are at one point the high bit in
multitexture unit 0. We then used the register combiner’s
conditional mode to display one of two colors depending on the
high bit of the current texel of multitexture unit 0. The following
code fragment implements this technique.
for (kk = 0; kk < 4; kk++) {
for (comp = 0; comp < 3; comp++) {
/I display either tex_ranzero or tex_ranone
/I depending on hi bit of tex_comp
setupblendhibit(ranzero[comp][kk],ranone[comp][kK]);
blend2tex(tex_comp[comp],tex_corran);
savetex(tex_corran);
if (kk < 3){
/I shift tex_comp left one
setupshift1();
blendtex(tex_comp[comp]);
savetex(tex_comp[comp]);
}
}
¥

The operation blend2tex(tex_a,tex_b) displays a multitextured
image with tex_a as multitexture unit 0 and tex b as
multitexture unit 1.

The arrays ranzero and ranone were initialized with random
luminances. These random luminances were used as input to the
function setupblendhibit(rgba0,rgbal). This function set up a
register combiner that would display either constant color rgba0
or rgbal depending on the high bit of texture0, and would blend
the color (rgba0 or rgbal) with texturel.

We found that setting the alpha channel of rgba0 and rgbal to
1/8 provided a reasonable balance of colors after twelve
successive blending operations. These blends were accumulated
in tex_corran (corner random). Note that this loop involves
12 randoms + 9 shifts = 21 passes, which expands to 168 passes
for all eight corners.

(@) (b)

Figure 11. Heavily correlated random values generated
by blending random colors depending on the bits of the
integer lattice value (a). Using (a) to index into a random
value reduces the correlation (b).

The resulting tex_corran still exhibited some coordinate
correlation, which we reduced with an additional eight single-bit
randomizations on tex_corran, yielding tex_corranran. This step
resulted in an additional 8 randoms + 7 shifts =15 passes per
corner for a total of 120 passes.

Due to the successive blending, the register combiner noise
function is Gaussian distributed. A normal distribution could be
recovered through a histogram equalization step, though such
operations are not yet accelerated on consumer-level hardware.

Figure 12. Noise function resulting from register
combiners.

5.4 Results

The register combiner implementation resulted in 375 passes,
but runs in .77 seconds at a resolution of 256 on a GeForce2
using version 12.0 of the “developer” driver. This results in a
1.3 Hz performance, which is suitable for interactive
applications but is not yet real-time. A discussion of the reasons
why the performance is slower than necessary is given later in
Section 6.2.

The resulting noise is shown in Figure 12. The NVidia
implementation blended random colors, yielding Gaussian noise,
whereas the reference and SGI implementations produced white
noise. If desired, one could redistribute the Gaussian noise into
white noise with a fixed histogram equalization step, though no
such operation is currently accelerated on NVidia GPUs.

6. Discussion

The implementation of the Perlin noise function on SGI and
NVidia GPUs has been successful in that we found it was
feasible, but disappointing in that subtle hardware limitations
prevent truly efficient implementations. These limitations
included the limited precision available in the 8 bit per
component framebuffer, the delay in performing a
CopyTexSublmage transfer from the framebuffer to the texture
memory, and the lack of acceleration of loginal operation blend
modes such as exclusive-or. The process has also been
illuminating, and has inspired us with several ideas for further
advancement in hardware design to overcome these limitations
and better support efficient multipass pixel shading.

6.1 Limited Precision

Most of the per-pixel operations need only a single channel, and
set R=G=B since this is the most efficient mode of operation.
The register combiners can be implemented to a higher
precision, but their input and output precision is limited to the
framebuffer precision.

The register combiners currently support a conversion between
8-bit unsigned external values and 9-bit signed internal values.
These conversions perform the function fix) = 2x — 1 on an
input, and /' (x) = 0.5x + 0.5 on the output, where x is each of the
components of an RGBA pixel.

We could likewise create a packed luminance conversion to the
input and output of the register combiners. The input mapping
would perform the function L = R << 16 | G << 8 | B yielding a
24-bit luminance value on which one could perform scalar
register combiner operations. Internally, the register combiner
could maintain a 16.8 fixed-point format, and support operations
such as addition, subtraction, multiplication and division using
the extended range and precision of the new format. Once the
operation is completed, the result may then be unpacked into the

8-bit framebuffer with the output mapping R = L >> 16, G =
(L>>8)&0xff and B & Oxff.

6.2 Swizzle-Blits

Given the number of passes required, the register combiner
performance was astounding, currently 1.3 Hz on a GeForce2
graphics accelerator at a resolution of 256x256. Profiling the
code revealed that the main bottleneck was the time it took to
save the framebuffer to a texture, adding an average of 2 ms per
pass for 354 of the passes. OpenGL currently does not support
rendering directly to texture, and the register combiner does not
allow the framebuffer to be used as an input.

Whereas framebuffer memory is organized in scanline order,
modern texture memory is organized into blocks and other
patterns to better capitalize on spatial coherence. This coherence
allows texture pixels to be more effectively cached during
texture mapping operation. However, in this case the layout of
texture memory is counterproductive. The cost to “swizzle” the
memory into the clustered arrangement when saving a
framebuffer image to texture memory dominates the execution
time of iterative multipass shaders.

We have verifies this delay with a profile of the code, revealing
that our CopyTexSublmage operations were taking longer than
any other component of our shader. We also experimented with
various resolutions and found a direct 1:1 correspondence
between the number of pixels and the execution time.

Perhaps a mode can be incorporated into the graphics
accelerator state that optionally defeats the spatial-coherent
clustering of texture memory. This mode could be enabled
during multipass shader evaluation, to eliminate the shuffled
memory delay incurred during the CopyTexSublmage
operations.

Alternatively, upcoming modes that support rendering directly
to texture may also ameliorate this problem.

6.3 Logical Blend Modes

Blending modes such as exclusive-or and logical shifts left and
right are extremely valuable when generating random values.
Unfortunately these operations are not accelerated under current
graphics drivers. Such operations are of the simplest to
implement in hardware, and we suspect they will become
accelerated as demand for them increases.

7. Conclusion

We have investigated the implementation of the Perlin noise
function as a multipass pixel shader. We have developed a
general algorithm and implemented it using the accelerated
features from two different manufacturers.

The SGI implementation based on PixelTransfer and PixelMap
operations remains faster than the NVidia implementation based
on register combiners. However, we expect the additional
register combiner stages available in the upcoming GeForce3
will close this gap.

The process of implementing a general-purpose procedure using
GPU accelerated operations has been illuminating. We are
excited by the prospect of using the GPU as a SIMD-based
supercomputer. However, this vision has been stifled by the low
precision available in the buffers and processors, and the latency
due to slow framebuffer-to-texture memory transfers. We
believe both problems can be solved with moderate changes to
existing graphics accelerator architectures, and have suggested
possible solution implementations.

Our noise implementation uses linear interpolation of random
values on an integer lattice. One can also implement cubic
interpolation at the expense of four extra passes. The function
SCURVE(u) = 31 — 2u’ can also be expressed as uu(3-2u). The
function 1/4 SCURVE(u) can be implement by modulating the
images u, u and 3/4 — 1/2 u. Note the latter is necessarily scaled
by Y4 to fall within the legal [0,1] OpenGL range. This result can
then be scaled by 4 (either through PixelTransfer or a register
combiner) to yield SCURVE(u).

We have investigated numerous methods for enhancing the
performance of these multipass pixel shaders. The 2-D s-t plane
examples suggested that image processing applications such as
translation and convolution could be applied, but such
techniques would not work for arbitrarily shaped objects in the
solid texture coordinate image, such as in Figure 13.

(a) ()

Figure 13. Application of the noise function (b) on a
sphere of solid texture coordinates (a).

The source code and an executable for both implementations of
the Perlin noise pixel shader can be found at:

http://graphics.cs.uiuc.edu/~jch/mpnoise.zip

Acknowledgments

Conversations with Pat Hanrahan and Henry Moreton were
helpful in determining the cause of the 3ms CopyTexSublmage
delay. This research was supported in part by a grant from the
Evans & Sutherland Computer Corp. Thanks also to Nate Carr
for proofreading the paper.

References

[1] Apodaca, A.A. Advanced Renderman: Creating CGI for Motion
Pictures. Morgan Jaufmannm 1999. See also: Renderman Tricks
Everyone Should Know, in SIGGRAPH 98 or SIGGRAPH 99
Advanced Renderman Course Notes.

[2] Carr, N.A. and J.C. Hart. Real-Time Procedural Solid Texturing.
Manuscript, in review. Apr. 2001.

[3] Ebert, D., F.K. Musgrave, D. Peachey, K. Perlin and S. Worley.
Texturing and Modeling: A Procedural Approach, Academic
Press.1994.

[4] Goehring, D. and O. Gerlitz. Advanced procedural texturing using
MMX technology. Intel MMX Technology Application Note, Oct.
1997. http://developer.intel.com/software/idap/
resources/technical collateral/mmx/proctex2.htm

[5] Hanrahan, P. and J. Lawson. A language for shading and lighting

calculations. Computer Graphics 24(4), (Proc. SIGGRAPH 90),
Aug. 1990, pp. 289-298.

[6] Hanrahan, P. Procedural shading (keynote). Eurographics /
SIGGRAPH Workshop on Graphics Hardware, Aug. 1999.
http://graphics.standford.edu/hanrahan/talks/rts1/slides.

[7] Hart, J. C., N. Carr, M. Kameya, S. A. Tibbits, and T.J Colemen.
Antialiased parameterized solid texturing simplified for consumer-

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

level hardware implementation. 1999 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, Aug. 1999, pp. 45-53.
Heidrich, W. and H.-P. Seidel. Realistic hardware-accelerated
shading and lighting. Proc. SIGGRAPH 99, Aug. 1999, pp. 171-
178.

Heidrich, W., R. Westermann, H-P Seidel and T. Ertl. Applications
of Pixel Textures in Visualization and Realistic Image Synthesis.
Proc. ACM Sym. on Interactive 3D Graphics, Apr. 1999, pp. 127-
134.

Kameya, M. and J.C. Hart. Bresenham noise. SIGGRAPH 2000
Conference Abstracts and Applications, July 2000.

McCool, M.C. and W. Heidrich. Texture Shaders. 1999

SIGGRAPH/Eurographics Workshop on Graphics Hardware, Aug.
1999, pp. 117-126.

Microsoft Corp. Direct3D 8.0 specification. Available at:
http://www.msdn.microsoft.com/directx.

Mine, A. and F. Neyret. Perlin Textures in Real Time using
OpenGL. Research Report #3713, INRIA, 1999. http://www-
imagis.imag.fr/Membres/Fabrice.Neyret/publis/RR-3713-
eng.html

NVidia Corp. Noise, component of the NVEffectsBrowser.
Available at: http://www.nvidia.com/developer.

Olano, M. and A. Lastra. A shading language on graphics
hardware: The PixelFlow shading system. Proc. SIGGRAPH 98,
July 1998, pp. 159-168.

OpenGL Architecture Review Board. OpenGL Extension Registry.
Available at: http://0ss.sgi.com/projects/ogl-sample/registry/

Peachey, D.R. Solid texturing of complex surfaces.
Graphics 19(3), July 1985, pp. 279-286.

Peercy, M.S., M. Olano, J. Airey and P.J. Ungar. Interactive multi-
pass programmable shading, Proc. SIGGRAPH 2000, July 2000,
pp. 425-432.

Perlin, K. An image synthesizer. Computer Graphics 19(3). July
1985, pp. 287-296.

Pixar Animation Studios. Future requirements for graphics
hardware. Memo, 12 April 1999.

Proudfoot, K., W.R. Mark, S. Tzvetkov and P. Hanrahan. A real-
time programmable shading system for programmable graphics
hardware. Proc. SIGGRAPH 2001, Aug. 2001, to appear.

Rhoades, J., G. Turk, A. Bell, U. Neumann, and A. Varshney.
Real-time procedural textures. 1992 Symposium on Interactive 3D
Graphics 25(2), March 1992, pp 95-100.

Segal, M. and K. Akeley. The OpenGL Graphics System: A
Specification, Version 1.2.1. Available at: http://www.opengl.org/.

Computer

Skinner, R. and C.E. Kolb. noise.c component of the Rayshade ray
tracer, 1991.

Chapter 7
Shading Through Multi-Pass Rendering

Marc Olano

Interactive Multi-Pass Programmable Shading

Mark S. Peercy, Marc Olano, John Airey; P. Jeffrey Ungar

Abstract

Programmable shading is a common technique for production an-
imation, but interactive programmable shading is not yet widely
available. We support interactive programmable shading on vir-
tually any 3D graphics hardware using a scene graph library on
top of OpenGL. We treat the OpenGL architecture as a general
SIMD computer, and translate the high-level shading description
into OpenGL rendering passes. While our system uses OpenGL,
the techniques described are applicable to any retained mode in-
terface with appropriate extension mechanisms and hardware API
with provisions for recirculating data through the graphics pipeline.

We present two demonstrations of the method. The first is
a constrained shading language that runs on graphics hardware
supporting OpenGL 1.2 with a subset of the ARB imaging exten-
sions. We remove the shading language constraints by minimally
extending OpenGL. The key extensions are color range (support-
ing extended range and precision data types) and pixel texture (us-
ing framebuffer values as indices into texture maps). Our second
demonstration is a renderer supporting the RenderMan Interface
and RenderMan Shading Language on a software implementation
of this extended OpenGL. For both languages, our compiler tech-
nology can take advantage of extensions and performance charac-
teristics unique to any particular graphics hardware.

CR categories and subject descriptors: 1.3.3 [Computer
Graphics]: Picture/Image generation; 1.3.7 [Image Processing]: En-
hancement.

Keywords: Graphics Hardware, Graphics Systems, Illumina-
tion, Languages, Rendering, Interactive Rendering, Non-Realistic
Rendering, Multi-Pass Rendering, Programmable Shading, Proce-
dural Shading, Texture Synthesis, Texture Mapping, OpenGL.

1 INTRODUCTION

Programmable shading is a means for specifying the appearance of
objects in a synthetic scene. Programs in a special purpose lan-
guage, known as shaders, describe light source position and emis-
sion characteristics, color and reflective properties of surfaces, or
transmittance properties of atmospheric media. Conceptually, these
programs are executed for each point on an object as it is being ren-
dered to produce a final color (and perhaps opacity) as seen from
a given viewpoint. Shading languages can be quite general, having

*Now at Intrinsic Graphics

SGl

constructs familiar from general purpose programming languages
such as C, including loops, conditionals, and functions. The most
common is the RenderMan Shading Language [32].

The power of shading languages for describing intricate light-
ing and shading computations been widely recognized since Cook’s
seminal shade tree research [7]. Programmable shading has played
a fundamental role in digital content creation for motion pictures
and television for over a decade. The high level of abstraction in
programmable shading enables artists, storytellers, and their techni-
cal collaborators to translate their creative visions into images more
easily. Shading languages are also used for visualization of scien-
tific data. Special data shaders have been developed to support the
depiction of volume data [3, 8], and a texture synthesis language has
been used for visualizing data fields on surfaces [9]. Image process-
ing scripting languages [22, 31] also share much in common with
programmable shading.

Despite its proven usefulness in software rendering, hardware
acceleration of programmable shading has remained elusive. Most
hardware supports a parametric appearance model, such as Phong
lighting evaluated per vertex, with one or more texture maps ap-
plied after Gouraud interpolation of the lighting results [29]. The
general computational nature of programmable shading, and the un-
bounded complexity of shaders, has kept it from being supported
widely in hardware. This paper describes a methodology to support
programmable shading in interactive visual computing by compil-
ing a shader into multiple passes through graphics hardware. We
demonstrate its use on current systems with a constrained shading
language, and we show how to support general shading languages
with only two hardware extensions.

1.1 Related Work

Interactive programmable shading, with dynamically changing
shader and scene, was demonstrated on the PixelFlow system [26].
PixelFlow has an array of general purpose processors that can ex-
ecute arbitrary code at every pixel. Shaders written in a language
based on RenderMan’s are translated into C++ programs with em-
bedded machine code directives for the pixel processors. An appli-
cation accesses shaders through a programmable interface exten-
sion to OpenGL. The primary disadvantages of this approach are
the additional burden it places on the graphics hardware and driver
software. Every system that supports a built-in programmable in-
terface must include powerful enough general computing units to
execute the programmable shaders. Limitations to these computing
units, such as a fixed local memory, will either limit the shaders
that may be run, have a severe impact on performance, or cause the
system to revert to multiple passes within the driver. Further, ev-
ery such system will have a unique shading language compiler as
part of the driver software. This is a sophisticated piece of software
which greatly increases the complexity of the driver.

Our approach to programmable shading stands in contrast to
the programmable hardware method. Its inspiration is a long line of
interactive algorithms that follow a general theme: treat the graph-
ics hardware as a collection of primitive operations that can be used

7-1

to build up a final solution in multiple passes. Early examples of this
model include multi-pass shadows, planar reflections, highlights on
top of texture, depth of field, and light maps [2, 10]. There has been
a dramatic surge of research in this area over the past few years.
Sophisticated appearance computations, which had previously been
available only in software renderers, have been mapped to generic
graphics hardware. For example, lighting per pixel, general bidi-
rectional reflectance distribution functions, and bump mapping now
run in real-time on hardware that supports none of those effects na-
tively [6, 17, 20, 24].

Consumer games like ID Software’s Quake 3 make extensive
use of multi-pass effects [19]. Quake 3 recognizes that multi-pass
provides a flexible method for surface design and takes the impor-
tant step of providing a scripting mechanism for rendering passes,
including control of OpenGL blending mode, alpha test functions,
and vertex texture coordinate assignment. In its current form, this
scripting language does not provide access to all of the OpenGL
state necessary to treat OpenGL as a general SIMD machine.

A team at Stanford has been investigating real-time pro-
grammable shading. Their focus is a framework and language that
explicitly divides operations into those that are executed at the ver-
tex processing stage in the graphics pipeline and those that are exe-
cuted at the fragment processing stage [25].

The hardware in all of these cases is being used as a com-
puting machine rather than a special purpose accelerator. Indeed,
graphics hardware has been used to accelerate techniques such as
back-projection for tomographic reconstruction [5] and radiosity
approximations [21]. It is now recognized that some new hardware
features, such as multi-texture [24, 29], pixel texture [17], and color
matrix [23], are particularly valuable for supporting these advanced
computations interactively.

1.2 Our Contribution

In this paper, we embrace and extend previous multi-pass tech-
niques. We treat the OpenGL architecture as a SIMD computer.
OpenGL acts as an assembly language for shader execution. The
challenge, then, is to convert a shader into an efficient set of
OpenGL rendering passes on a given system. We introduce a com-
piler between the application and the graphics library that can target
shaders to different hardware implementations.

This philosophy of placing the shading compiler above the
graphics API is at the core of our work, and has a number of
advantages. We believe the number of languages for interactive
programmable shading will grow and evolve over the next sev-
eral years, responding to the unique performance and feature de-
mands of different application areas. Likewise, hardware will in-
crease in performance and many new features will be introduced.
Our methodology allows the languages, compiler, and hardware to
evolve independently because they are cleanly decoupled.

This paper has three main contributions. First, we formalize
the idea of using OpenGL as an assembly language into which pro-
grammable shaders are translated, and we show how to apply dy-
namic tree-rewriting compiler technology to optimize the mapping
between shading languages and OpenGL (Section 2). Second, we
demonstrate the immediate application of this approach by intro-
ducing a constrained shading language that runs interactively on
most current hardware systems (Section 3). Third, we describe the
color range and pixel texture OpenGL extensions that are neces-
sary and sufficient to accelerate fully general shading languages
(Section 4). As a demonstration of the viability of this solution,
we present a complete RenderMan renderer including full support
of the RenderMan Shading Language running on a software im-

Y +

Vertex Operations (transforms, Pixel Operations (lookup table,
tex coord generation, lighting) color matrix, minmax)

<
¢

\
Rasterization (color

interpolation, texturing, fog) <_|

Fragment Operations (depth,

alpha test, stencil, blending)

\ J
Texture Memory

Framebuffer

Figure 1: A simplified block diagram of the OpenGL archi-
tecture. Geometric data passes through the vertex oper-
ations, rasterization, and fragment operations to the frame-
buffer. Pixel data (either from the host or the framebuffer)
passes through the pixel operations and on to either texture
memory or through the fragment pipeline to the framebuffer.

plementation of this extended OpenGL. We close the paper with a
discussion (Section 5) and conclusion (Section 6).

2 THE SHADING FRAMEWORK

There is great diversity in modern 3D graphics hardware. Each
graphics system includes unique features and performance charac-
teristics. Countering this diversity, all modern graphics hardware
also supports the basic features of the OpenGL API standard.

While it is possible to add shading extensions to graphics hard-
ware, OpenGL is powerful enough to support shading with no ex-
tensions at all. Building programmable shading on top of standard
OpenGL decouples the hardware and drivers from the language,
and enables shading on every existing and future OpenGL-based
graphics system.

A compiler turns shading computations into multiple passes
through the OpenGL rendering pipeline (Figure 1). This compiler
can produce a general set of rendering passes, or it can use knowl-
edge of the target hardware to pick an optimized set of passes.

2.1 OpenGL as an Assembly Language

One key observation allows shaders to be translated into multi-pass
OpenGL: a single rendering pass is also a general SIMD instruction
— the same operations are performed simultaneously for all pixels
in an object. At the simplest level, the framebuffer is an accumu-
lator, texture or pixel buffers serve as per-pixel memory storage,
blending provides basic arithmetic operations, lookup tables sup-
port function evaluation, the alpha test provides a variety of con-
ditionals, and the stencil buffer allows pixel-level conditional exe-
cution. A shader computation is broken into pieces, each of which
can be evaluated by an OpenGL rendering pass. In this way, we
build up a final result for all pixels in an object (Figure 2). There
are typically several ways to map shading operations into OpenGL.
We have implemented the following:

Data Types: Data with the same value for every pixel in an ob-
ject are called uniform, while data with values that may vary from
pixel to pixel are called varying. Uniform data types are handled
outside the graphics pipeline. The framebuffer retains intermediate
varying results. Its four channels may hold one quadruple (such as
a homogeneous point), one triple (such as a vector, normal, point,
or color) and one scalar, or four independent scalars. We have made
no attempt to handle varying data types with more than four chan-
nels. The framebuffer channels (and hence independent scalars or

7-2

#include "marble.h"
surface marble()
{
varying color a;
uniform string tx;
uniform float x; x = 1/2;
tx = "noisebw.tx";
FB = texture(tx,scale(x,x,x));

repeat(i:;) {

X = X*.5;
FB *=.5;
FB += texture(tx,scale(x,x,x));

1
FB = lookup(FB,tab);

a=FB;

FB = diffuse;

FB*=a;

FB += environment("env");

y

Figure 2: SIMD Computation of a Shader. Some of the different
passes for the shader written in ISL listed on the left are shown

as thumbnails down the right column. The result of the com-
plete shader is shown on the lower left.

the components of triples and quadruples) can be updated selec-
tively on each pass by setting the write-mask with g1ColorMask.

Variables: Varying global, local, and temporary variables
are transferred from the framebuffer to a named texture using
glCopyTexSubImage2D, which copies a portion of the frame-
buffer into a portion of a texture. In our system, these textures can
be one channel (intensity) or four channels (RGBA), depending on
the data type they hold. Variables are used either by drawing a tex-
tured copy of the object bounding box or by drawing the object ge-
ometry using a projective texture. The relative speed of these two
methods will vary from graphics system to graphics system. In-
tensity textures holding scalar variables are expanded into all four
channels during rasterization and can therefore be restored into any
framebuffer channel.

Arithmetic Operations: Most arithmetic operations are per-
formed with framebuffer blending. They have two operands: the
framebuffer contents and an incoming fragment. The incom-
ing fragment may be produced either by drawing geometry (ob-
ject color, a texture, a stored variable, etc.) or by copying pix-
els from the framebuffer and through the pixel operations with
glCopyPixels. Data can be permuted (swizzled) from one
framebuffer channel to another or linearly combined more gen-
erally using the color matrix during a copy. The framebuffer
blending mode, set by glBlendEquation, glBlendFunc,
and glLogicOp, supports overwriting, addition, subtraction, mul-
tiplication, bit-wise logical operations, and alpha blending. Unex-
tended OpenGL does not have a divide blend mode. We handle di-
vide using multiplication by the reciprocal. The reciprocal is com-
puted like other mathematical functions (see below). More com-
plicated binary operations are reduced to a combination of these
primitive operations. For example, a dot product of two vectors is

a component-wise multiplication followed by a pixel copy with a
color matrix that sums the resulting three components together.

Mathematical and Shader Functions: Mathematical func-
tions with a single scalar operand (e.g. sin or reciprocal) use color
or texture lookup tables during a framebuffer-to-framebuffer pixel
copy. Functions with more than one operand (e.g. atan2) or a sin-
gle vector operand (e.g. normalize or color space conversion) are
broken down into simpler monadic functions and arithmetic opera-
tions, each of which can be supported in a pass through the OpenGL
pipeline. Some shader functions, such as texturing and diffuse or
specular lighting, have direct correspondents in OpenGL. Often,
complex mathematical and shader functions are simply translated
to a series of simpler shading language functions.

Flow Control: Stenciling, set by glStencilFunc and
glStencilOp, limits the effect of all operations to only a subset
of the pixels, with other pixels retaining their original framebuffer
values. We use one bit of the stencil to identify pixels in the ob-
ject, and additional stencil bits to identify subsets of those pixels
that pass varying conditionals (if-then-else constructs and loops).
One stencil bit is devoted to each level of nesting. Loops with uni-
form control and conditionals with uniform relations do not need a
stencil bit to control their influence because they affect all pixels.

A two step process is used to set the stencil bit for a varying
conditional. First, the relation is computed with normal arithmetic
operations, such that the result ends up in the alpha channel of the
framebuffer. The value is zero where the condition is true and one
where it is false. Next, a pixel copy is performed with the alpha > .5
test enabled (set by glAlphaFunc). Only fragments that pass
the alpha test are passed on to the stenciling stage of the OpenGL
pipeline. A stencil bit is set for all of these fragments. The stencil
remains unchanged for fragments that failed the alpha test. In some
cases, the first operation in the body of the conditional can occur in
the same pass that sets the stencil.

The passes corresponding to the different blocks of shader
code at different nesting levels affect only those pixels that have
the proper stencil mask. Because we are executing a SIMD compu-
tation, it is necessary to evaluate both branches of if-then-else con-
structs whose relation varies across an object. The stencil compare
for the else clause simply uses the complement of the stencil bit for
the then clause. Similarly, it is necessary to repeat a loop with a
varying termination condition until all pixels within the object exit
the loop. This requires a test that examines all of the pixels within
the object. We use the minmax function from the ARB imaging
extension as we copy the alpha channel to determine if any alpha
values are non-zero (signifying they still pass the looping condi-
tion). If so, the loop continues.

2.2 OpenGL Encapsulation

We encapsulate OpenGL instructions in three kinds of rendering
passes: GeomPasses, CopyPasses, and CopyTexPasses. Geom-
Passes draw geometry to use vertex, rasterization, and fragment
operations. CopyPasses copy a subregion of the framebuffer (via
glCopyPixels) back into the same place in the framebuffer to
use pixel, rasterization, and fragment operations. A stencil allows
the CopyPass to avoid operating on pixels outside the object. Copy-
TexPasses copy a subregion of the framebuffer into a texture object
(via glCopyTexSubImage2D) and also utilize pixel operations.
There are two subtypes of GeomPass. The first draws the object
geometry, including normal vectors and texture coordinates. The
second draws a screen-aligned bounding rectangle that covers the
object using stenciling to limit the operations to pixels on the ob-
ject. Each pass maintains the relevant OpenGL state for its path

7-3

through the pipeline. State changes on drawing are minimized by
only setting the state in each pass that is not default and immedi-
ately restoring that state after the pass.

2.3 Compiling to OpenGL

The key to supporting interactive programmable shading is a com-
piler that translates the shading language into OpenGL assembly.
This is a CISC-like compiler problem because OpenGL passes are
complex instructions. The problem is somewhat simplified due to
constraints in the language and in OpenGL as an instruction set.
For example, we do not have to worry about instruction scheduling
since there is no overlap between rendering passes.

Our compiler implementation is guided by a desire to retarget
the compiler to easily take advantage of unique features and perfor-
mance and to pick the best set of passes for each target architecture.
We also want to be able to support multiple shading languages and
adapt as languages evolve. To help meet these goals, we built our
compiler using an in-house tool inspired by the iburg code gen-
eration tool [11], though we use it for all phases of compilation.
This tool finds the least-cost covering of a tree representation of the
shader based on a text file of patterns.

A simple example can show how the tree-matching tool op-
erates and how it allows us to take advantage of extensions to
OpenGL. Part of a shader might be matched by a pair of tex-
ture lookups, each with a cost of one, or by a single multi-texture
lookup, also with a cost of one. In this case, multi-texture is cheaper
because it has a total cost of one instead of two. Using similar
matching rules and semantic actions, the compiler can make use of
fragment lighting, light texture, noise generation, divide or condi-
tional blends, or any other OpenGL extension [16, 27].

The entire shader is matched at once, giving the set of match-
ing rules that cover the shader with the least total cost. For exam-
ple, the computations surrounding the above pair of texture lookups
expand the set of possible matching rules. Given operation A, tex-
ture lookup B, texture lookup C, and operation D, it may be pos-
sible to do all of the operations in four separate passes (A,B,C,D),
to do the surrounding operations separately while combining the
texture lookups into one multi-texture pass for a total cost of three
(A,BC,D), or to combine one computation with each texture lookup
for a cost of two (AB,CD). By considering the entire shader we can
choose the set of matching rules with the least overall cost.

When we use the tool for final OpenGL pass generation, we
currently use the number of passes as the cost for each matching
rule. For performance optimization, the costs should correspond
to predicted rendering speed, so the cost for a GeomPass would be
different from the cost for a CopyPass or a CopyTexPass.

The pattern matching happens in two phases, labeling and re-
ducing. Labeling is done bottom-up through the abstract syntax
tree, using dynamic programming to find the least-cost set of pat-
tern match rules. Reducing is done top-down, with one semantic
action run before the node’s children are reduced and one after.
The iburg-like label/reduce tool proved useful for more than just
final pass selection. We use it for shader syntax checking, constant
folding, and even memory allocation (although most of the memory
allocation algorithm is in the code associated with a small number
of rules). The ease of changing costs and creating new matching
rules allows us to achieve our goal of flexible retargeting of the
compiler for different hardware and shading languages.

2.4 Scene Graph Support

Since objects may be rendered multiple times, it is necessary to
retain geometry data and to deliver it repeatedly to the graphics

hardware. In addition, shaders need to be associated with objects to
describe their appearances, and the shaders and objects need to be
translated into OpenGL passes to render an image. Our framework
supports these operations in a scene graph used by an application
through the addition of new scene graph containers and new traver-
sals.

In our implementation, we have extended the Cosmo3D scene
graph library [30]. Cosmo3D uses a familiar hierarchical scene
graph. Internal nodes describe coordinate transformations, while
the leaves are Shape nodes, each of which contains a list of Geome-
try and an Appearance. Traversals of the scene graph are known as
actions. A DrawAction, for example, is applied to the scene graph
to render the objects into a window.

We have implemented a new appearance class that contains
shaders. When included in a shape node, this appearance com-
pletely describes how to shade the geometry in the shape. The
shaders may include a list of active light shaders, a displacement
shader, a surface shader, and an atmosphere shader. In addition,
we have implemented a new traversal, known as a ShadeAction. A
ShadeAction converts a scene graph containing shapes with the new
appearance into another Cosmo3D scene graph describing the mul-
tiple passes for all of the objects in the original scene graph. (The
transformation of scene graphs is a powerful, general technique that
has been proposed to address a variety of problems [1].) The key
element of the ShadeAction is the shading language compiler that
converts the shaders into multiple passes. A ShadeAction may treat
multiple objects that share the same shader as a single, combined
object to minimize overhead. A DrawAction applied to this second
scene graph renders the final image.

The scene graph passes information to the compiler including
the matrix to transform from the object’s coordinate system into
camera space and the screen space footprint for the geometry. The
footprint is computed during the ShadeAction by projecting a 3D
bounding box of the geometry into screen space and computing an
axis-aligned 2D bounding box of the eight projected points. Only
pixels within the 2D bounding box are copied on a CopyPass or
drawn on the quad-GeomPass to minimize unnecessary data move-
ment when shading each object.

We provide support for debugging at the single-step, pass-
by-pass level through special hooks inserted into the DrawAction.
Each pass is held in an extended Cosmo3D Group node, which in-
vokes the debugging hook functions when drawn. Each pass is also
tagged with the line of source code that generated it, so everything
from shader source-level debugging to pass-by-pass image dumps
is possible. Hooks at the per-pass level also let us monitor or es-
timate performance. At the coarsest level, we can find the number
of passes executed, but we can also examine each pass to record
details like pixels written or time to draw.

3 EXAMPLE: INTERACTIVE SL

We have developed a constrained shading language, called ISL (for
Interactive Shading Language) [25] and an ISL compiler to demon-
strate our method on current hardware. ISL is similar in spirit to the
RenderMan Shading Language in that it provides a C-like syntax
to specify per-pixel shading calculations, and it supports separate
light, surface, and atmosphere shaders. Data types include varying
colors, and uniform floats, colors, matrices, and strings. Local vari-
ables can hold both uniform and varying values. Nestable flow con-
trol structures include loops with uniform control, and uniform and
varying conditionals. There are built-in functions for diffuse and
specular lighting, texture mapping, projective textures, environment
mapping, RGBA one-dimensional lookup tables, and per-pixel ma-

7-4

surface celtic() {
varying color a;
FB = diffuse;
FB *= color(.5,.2,0.,1.);
a=FB;
FB = specular(30.);
FB += a;
FB *= texture("celtic");
a=FB;
FB=1;
FB —= texture("celtic");
FB *= texture("silk");
FB *= .15;
FB += a;

}
distantlight leaves(uniform string
map = "leaves”, ...) {
uniform float tx;
uniform float ty;
uniform float tz;
tx = frame*speedx+phasex;
ty = frame*speedy+phasey;
tz = frame*speedz+phasez;
FB = project(map,
scale(sx,sx,sx)*
rotate(0,0,1,rx)*
translate(ax*sin(tx),0,0)*
shadermatrix);
FB *= project(map,
scale(sy,sy,sy)"...);

uniform matrix It = (0,0,0,0,
0,0,0,0,1,1,1,0,0,0,0,1);
surface bump(uniform string b="";
uniform string tx = ") {
uniform matrix m;
FB = texture(b);
m = objectmatrix;
m(0][3] = m[1][3] = m[2][3%

0.;
m([3][3] = m[3][0] = m[3][1] = O.;
m[3][2] = 0.;

m = [t*m*translate(-1,-1,-1)*
scale(2,2,2);

FB = transform(FB,m);

FB *= texture(tx);

}

#include "threshtab.h"

surface shipRockRot...) {
varying color a, b, c;
FB = texture(rot); FB *= .5;
FB += .32*(1-cos(.08*frame));
FB = lookup(FB,mtab); ¢ = FB;
FB = color(1,1,1,1); FB —=c;
FB *= texture(t1); a = FB;
FB = texture(t2);
FB *= texture(rot);
FB = diffuse;
FB *= color(.5,.2,0,1); b = FB;
FB = specular(30.);
FB +=b; FB *= texture(t2);
FB*=c; FB += a;

#include "swizzle.h"
table greentable = { {0,.2,0,1},
{0,.4,0,1) };
surface toon(uniform float do = 1.;
uniform float edge = .25) {
FB = environment("park.env");
if (do > .5) {
FB += edge;
FB =transform(FB,rgba_rrra);
FB =lookup(FB,greentable);
FB += environment("sun");
1
}

Figure 3: ISL Examples. ISL shaders are shown to the right of
each image. Ellipses denote where parameters and state-
ments have been omitted. Some tables are in header files.

trix transformations. In addition, ISL supports uniform shader pa-
rameters and a set of uniform global variables (shader space, object
space, time, and frame count).

We have intentionally constrained ISL in a number of ways.
First, we only chose primitive operations and built-in functions
that can be executed on any hardware supporting base OpenGL 1.2
plus the color matrix extension. Consequently, many current hard-
ware systems can support ISL. (If the color matrix transformation
is eliminated, ISL should run anywhere.) This constraint provides
the shader writer with insight into how limited precision of current
commercial hardware may affect the shader. Second, the syntax
does not allow varying expressions of expressions, which ensures
that the compiler does not need to create any temporary storage
not already made explicit in the shader. As a result, the writer of
a shader knows by inspection the worst-case temporary storage re-
quired by the shading code (although the compiler is free to use less
storage, if possible). Third, arbitrary texture coordinate computa-
tion is not supported. Texture coordinates must come either from
the geometry or from the standard OpenGL texture coordinate gen-
eration methods and texture matrix.

One consequence of these design constraints is that ISL shad-
ing code is largely decoupled from geometry. For example, since
shader parameters are uniform there is no need to attach them di-
rectly to each surface description in the scene graph. As a result,
ISL and the compiler can migrate from application to application
and scene graph to scene graph with relative ease.

3.1 Compiler

We perform some simple optimizations in the parser. For instance,
we do limited constant compression by evaluating at parse time
all expressions that are declared uniform. When parameters or the
shader code change, we must reparse the shader. In our current sys-
tem, we do this every time we perform a ShadeAction. A more so-
phisticated compiler, such as the one implemented for the Render-
Man Shading Language (Section 4) performs these optimizations
outside the parser.

We expand the parse trees for all of the shaders in an appear-
ance (light shaders, surface shader, and atmosphere shader) into a
single tree. This tree is then labeled and reduced using the tree
matching compiler tool described in Section 2.3. The costs fed into
the labeler instruct the compiler to minimize the total number of
passes, regardless of the relative performance of the different kinds
of passes.

The compiler recognizes and optimizes subexpressions such
as a texture, diffuse, or specular lighting multiplied by a constant.
The compiler also recognizes when a local variable is assigned a
value that can be executed in a single pass. Rather than executing
the pass, storing the result, and retrieving it when referenced, the
compiler simply replaces the local variable usage with the single
pass that describes it.

3.2 Demonstration

We have implemented a simple viewer on top of the extended scene
graph to demonstrate ISL running interactively. The viewer sup-
ports mouse interaction for rotation and translation. Users can also
modify shaders interactively in two ways. They can edit shader text
files, and their changes are picked up immediately in the viewer.
Additionally, they can modify parameters by dragging sliders, ro-
tating thumb-wheels, or entering text in a control panel. The viewer
creates the control panel on the fly for any selected shader. Changes
to the parameters are seen immediately in the window. Examples
of the viewer running ISL are given in Figures 2 and 3.

7-5

4 EXAMPLE: RENDERMAN SL

RenderMan is a rendering and scene description interface standard
developed in the late 1980s [14, 28, 32]. The RenderMan stan-
dard includes procedural and bytestream scene description inter-
faces. It also defines the RenderMan Shading Language, which
is the de facto standard for programmable shading capability and
represents a well-defined goal for anyone attempting to accelerate
programmable shading.

The RenderMan Shading Language is extremely general, with
control structures common to many programming languages, rich
data types, and an extensive set of built-in operators and geomet-
ric, mathematical, lighting, and communication functions. The lan-
guage originally was designed with hardware acceleration in mind,
so complicated or user-defined data types that would make acceler-
ation more difficult are not included. It is a large but straightforward
task to translate the RenderMan Shading Language into multi-pass
OpenGL, assuming the following two extensions:

Extended Range and Precision Data Types: Even the sim-
plest RenderMan shaders have intermediate computations that re-
quire data values to extend beyond the range [0-1], to which
OpenGL fragment color values are clamped. In addition, they
need higher precision than is found in current commercial hard-
ware. With the color range extension, color data can have an
implementation-specific range to which it is clamped during raster-
ization and framebuffer operations (including color interpolation,
texture mapping, and blending). The framebuffer holds colors of
the new type, and the conversion to a displayable value happens
only upon video scan-out. We have used the color range extension
with an IEEE single precision floating point data type or a subset
thereof to support the RenderMan Shading Language.

Pixel Texture: RenderMan allows texture coordinates to be
computed procedurally. In this case, texture coordinates cannot
be expected to change linearly across a geometric primitive, as re-
quired in unextended OpenGL. This general two-dimensional indi-
rection mechanism can be supported with the OpenGL pixel texture
extension [17, 18, 27]. This extension allows the (possibly float-
ing point) contents of the framebuffer to be used as texture indices
when pixels are copied from the framebuffer. The red, green, blue,
and alpha channels are used as texture coordinates s, t, r, and q,
respectively. We use pixel texture not only to index two dimen-
sional textures but also to index extremely wide one-dimensional
textures. These wide textures are used as lookup tables for math-
ematical functions such as sin, reciprocal, and sqrt. These can be
simple piecewise linear approximations, starting points for Newton
iteration, components used to construct the more complex mathe-
matical functions, or even direct one-to-one mappings for a reduced
floating point format.

4.1 Scene Graph Support

The RenderMan Shading Language demands greater support from
the scene graph library than ISL because geometry and shaders are
more tightly coupled. Varying parameters can be supplied as four
values that correspond to the corners of a surface patch, and the
parameter over the surface is obtained through bilinear interpola-
tion. Alternatively, one parameter value may be supplied per con-
trol point for a bicubic patch mesh or a NURBS patch, and the
parameter is interpolated using the same basis functions that de-
fine the surface. We associate a (possibly empty) list of named pa-
rameters with each surface to hold any parameters provided when
the surface is defined. When the surface geometry is tessellated
to form GeoSets (triangle strip sets and fan sets, etc.), its parame-
ters are transferred to the GeoSets so that they may be referenced

Figure 4: RenderMan SL Examples. The top and bottom im-
ages of each pair were rendered with PhotoRedlistic Render-
Man from Pixar and our multi-pass OpenGL renderer, respec-
tively. No shaders use image maps, except for the reflection
and depth shadow maps generated on the fly. The wood
floor, blue marble, red apple, and wood block print textures
all are generated procedurally. The velvet and brushed metal
shaders use sophisticated i1luminance blocks for their re-
flective properties. The specular highlight differences are due
to Pixar’s proprietary specular function; we use the definition
from the RenderMan specification. The blue marble, wood
floor, and apple do not match because of differencesin in the
noise function. Other discrepancies typically are due to lim-
ited precision lookup tables used to help evaluate mathemat-
ical functions. (Credit: LGParquetPlank by Larry Gritz, SHWvel-
vet and SHWbrushedmetal by Stephen Westin, DPBlueMarble
by Darwin Peachey, eroded from the RenderMan compan-
ion, JMredapple by Jonathan Merritt, and woodblockprint
by Scott Johnston. Courtesy of the RenderMan Repository
http://www.renderman.org.)

7-6

and drawn as vertex colors by the passes produced by the compiler.
Similarly, a shader may require derivatives of surface properties,
such as the partial derivatives of the position (dP/du and dP/dv)
either as global variables or through a differential function such
as calculatenormal. A shader may also use derivatives of
user-supplied parameters. The compiler can request from the scene
graph any of these quantities evaluated over a surface at the same
points used in its tessellation. As with any other parameter, they are
computed on the host and stored in the vertex colors for the surface.
Where possible, lazy evaluation ensures that the user does not pay
in time or space for this support unless requested.

4.2 Compiler

Our RenderMan compiler is based on multiple phases of the tree-
matching tool described in Section 2.3. The phases include:

Parsing: convert source into an internal tree representation.

Phase(: detect errors

Phasel: perform context-sensitive typing (e.g. noise, texture)

Phase2: detect and compress uniform expressions

Phase3: compute “difference trees” for Derivatives

Phase4: determine variable usage and live range information

Phase5: identify possible OpenGL instruction optimizations

Phase6: allocate memory for variables

Phase7: generate optimized, machine specific OpenGL

The mapping of RenderMan to OpenGL follows the method-
ology described in Section 2.1. Texturing and some lighting carry
over directly; most math functions are implemented with lookup
tables; coordinate transformations are implemented with the color
matrix; loops with varying termination condition are supported with
minmax; and many built-in functions (including illuminance, solar,
and illuminate) are rewritten in terms of simpler operations. Fea-
tures whose mapping to OpenGL is more sophisticated include:

Noise: The RenderMan SL provides band-limited noise
primitives that include 1D, 2D, 3D, and 4D operands and single
or multiple component output. We use floating point arithmetic and
texture tables to support all of these functions.

Derivatives: The RenderMan SL provides access to surface-
derivative information through functions that include Du, Dv,
Deriv, area,and calculatenormal. We dedicate a compiler
phase to fully implement these functions using a technique similar
that described by Larry Gritz [12].

A number of optimizations are supported by the compiler.
Uniform expressions are identified and computed once for all pix-
els. If texture coordinates are linear functions of s and ¢ or vertex
coordinates, they are recognized as a single pass with some com-
bination of texture coordinate generation and texture matrix. Tex-
ture memory utilization is minimized by allocating storage based
on single-static assignment and live-range analysis [4].

4.3 Demonstration

We have implemented a RenderMan renderer, complete with shad-
ing language, bytestream, and procedural interfaces on a software
implementation of OpenGL including color range and pixel tex-
ture. We experimented with subsets of IEEE single precision float-
ing point. An interesting example was a 16 bit floating point format
with a sign bit, 10 bits of mantissa and 5 bits of exponent. This
format was sufficient for most shaders, but fell short when com-
puting derivatives and related difference-oriented functions such
as calculatenormal. Our software implementation supported
other OpenGL extensions (cube environment mapping, fragment
lighting, light texture, and shadow), but they are not strictly neces-
sary as they can all be computed using existing features.

ISL Image celtic | leaves | bump | rot | toon
MPix Filled 2.8 43 1.2 22 | 19
Frames/Second 6.8 73 9.6 125 | 4.6

RSL Image teapots | apple | print
MPix Filled 500 280 144

Table 1: Performance for 512x512 images on Silicon Graphics
Octane/MXI

The RenderMan bytestream interface was implemented on top
of the RenderMan procedural interface. When data is passed to the
procedural interface, it is incorporated into a scene graph. Higher
order geometric primitives not native to Cosmo3D, such as trimmed
quadrics and NURBS patches are accommodated by extending the
scene graph library with parametric surface types, which are tes-
sellated just before drawing. At the WorldEnd procedural call, this
scene graph is rendered using a ShadeAction that invokes the Ren-
derMan shading language compiler followed by a DrawAction.

To establish that the implementation was correct, over 2000
shading language tests, including point-feature tests, publicly avail-
able shaders, and more sophisticated shaders were written or ob-
tained. The results of our renderer were compared to Pixar’s com-
mercially available PhotoRealistic RenderMan renderer. While
never bit-for-bit accurate, the shading is typically comparable to
the eye (with expected differences due, for instance, to the noise
function). A collection of examples is given in Figure 4. We fo-
cused primarily on the challenge of mapping the entire language to
OpenGL, so there is considerable room for further optimization.

There are a few notable limitations in our implementation.
Displacement shaders are implemented, but treated as bump map-
ping shaders; surface positions are altered only for the calculation
of normals, not for rasterization. True displacement would have
to happen during object tessellation and would have performance
similar to displacement mapping in traditional software implemen-
tations. Transparency is not implemented. It is possible, but re-
quires the scene graph to depth-sort potentially transparent surfaces.
Pixel texture, as it is implemented, does not support texture filter-
ing, which can lead to aliasing. Our renderer also does not currently
support high quality pixel antialiasing, motion blur, and depth of
field. One could implement all of these through the accumulation
buffer as has been demonstrated elsewhere [13].

5 DISCUSSION

We measured the performance of several of our ISL and RenderMan
shaders (Table 1). The performance numbers for millions of pixels
filled are conservative estimates since we counted all pixels in the
object’s 2D bounding box even when drawing object geometry that
touched fewer pixels.

5.1 Drawbacks

Our current system has a number of inefficiencies that impact our
performance. First, since we do not use deferred shading, we may
spend several passes rendering an object that is hidden in the final
image. There are a variety of algorithms that would help (for ex-
ample, visibility culling at the scene graph level), but we have not
implemented any of them.

Second, the bounding box of objects in screen space is used
to define the active pixels for many passes. Consequently pixels
within the bounding box but not within the object are moved un-
necessarily. This taxes one of the most important resources in hard-
ware: bandwidth to and from memory.

7-7

Third, we have only included a minimal set of optimization
rules in our compiler. Many current hardware systems share frame-
buffer and texture memory bandwidth. On these systems, stor-
age and retrieval of intermediate results bears a particularly high
price. This is a primary motivation for doing as many operations
per pass as possible. Our iburg-like rule matching works well for
the pipeline of simple units found in standard OpenGL, but more
complex units (as found in some new multitexture extensions, for
example) require more powerful compiler technology. Two possi-
bilities are surveyed by Harris [15].

5.2 Advantages

Our methodology allows research and development to proceed in
parallel as shading languages, compilers, and hardware indepen-
dently evolve. We can take advantage of the unique feature and
performance needs of different application areas through special-
ized shading languages.

The application does not have to handle the complexities of
multipass shading since the application interface is a scene graph.
This model is a natural extension of most interactive applications,
which already have a retained mode interface of some sort to enable
users to manipulate their data. Applications still retain the other
advantages of having a scene graph, like occlusion culling and level
of detail management.

As mentioned, we have only implemented a few of the many
possible compiler optimizations. As the compiler improves, our
performance will improve, independent of language or hardware.

Finally, the rapid pace of graphics hardware development has
resulted in systems with a diverse set of features and relative feature
performance. Our design allows an application to use a shading
language on all of the systems, and still take advantage of many of
their unique characteristics. Hardware vendors do not need to create
the shading compiler and retained data structures since they operate
above the level of the drivers. Further, since complex effects can be
supported on unextended hardware, designers are free to create fast,
simple hardware without compromising on capabilities.

6 CONCLUSION

We have created a software layer between the application and the
hardware abstraction layer to translate high-level shading descrip-
tions into multi-pass OpenGL. We have demonstrated this approach
with two examples, a constrained shading language that runs inter-
actively on current hardware, and a fully general shading language.
We have also shown that general shading languages, like the Ren-
derMan Shading Language, can be implemented with only two ad-
ditional OpenGL extensions.

There is a continuum of possible languages between ISL and
the RenderMan Shading Language with different levels of func-
tionality. We have applied our method to two different shading lan-
guages in part to demonstrate its generality.

There are many avenues of future research. New compiler
technology can be developed or adapted for programmable shading.
There are significant optimizations that we are investigating in our
compilers. Research is also needed to understand what hardware
features are best for supporting interactive programmable shading.
Finally, given examples like the scientific visualization constructs
described by Crawfis that are not found in the RenderMan shading
language [9], we believe the wide availability of interactive pro-
grammable shading will spur exciting developments in new shading
languages and new applications for them.

References

[1] BIRCH, P., BLYTHE, D., GRANTHAM, B., JONES, M., SCHAFER, M., SE-
GAL, M., AND TANNER, C. An OpenGL++ Specification. SGI, March 1997.

[2

s =

[10]

[11]

[12]

[13]

(14

[15

[17]

[18]

[19]

[20]

[21]

(22

[23]

[24]

[25]

[26]

[30]

[31]

[32]

BLYTHE, D., GRANTHAM, B., KILGARD, M. J., MCREYNOLDS, T., NEL-
SON, S. R., FOWLER, C., Hul, S., AND WOMACK, P. Advanced graphics
programming techniques using OpenGL: Course notes. In Proceedings of
SIGGRAPH ’99 (July 1999).

Bock, D. Tech watch: Volume rendering. Computer Graphics World 22, 5
(May 1999).

BRIGGS, P. Register Allocation via Graph Coloring. PhD thesis, Rice Uni-
versity, April 1992.

CABRAL, B., CAM, N., AND FORAN, J. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. 1994 Sympo-
sium on Volume Visualization (October 1994), 91-98. ISBN 0-89791-741-3.
CABRAL, B., OLANO, M., AND NEMEC, P. Reflection space image based
rendering. Proceedings of SIGGRAPH 99 (August 1999), 165-170.

CoOK, R. L. Shade trees. Computer Graphics (Proceedings of SSIGGRAPH
84) 18, 3 (July 1984), 223-231. Held in Minneapolis, Minnesota.

nggm’ B., AND MACKERRAS, P. Data shaders. Visualization *93 1993
(1993).

CRAWFIS, R. A., AND ALLISON, M. J. A scientific visualization synthe-
sizer. Visualization 91 (1991), 262-267.

DIEFENBACH, P. J., AND BADLER, N. I. Multi-pass pipeline rendering: Re-
alism for dynamic environments. 1997 Symposium on Interactive 3D Graph-
ics (April 1997), 59-70.

FRASER, C. W., HANSON, D. R., AND PROEBSTING, T. A. Engineering
a simple, efficient code generator generator. ACM Letters on Programming
Languages and Systems 1, 3 (September 1992), 213-226.

GRITZ, L., AND HAHN, J. K. BMRT: A global illumination implementation
of the RenderMan standard. Journal of Graphics Tools 1, 3 (1996), 29-47.
HAEBERLI, P. E., AND AKELEY, K. The accumulation buffer: Hardware

support for high-quality rendering. Computer Graphics (Proceedings of SIG-
GRAPH 90) 24, 4 (August 1990), 309-318.

HANRAHAN, P., AND LAWSON, J. A language for shading and lighting cal-
culations. Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August
1990), 289-298.

HARRIS, M. Extending microcode compaction for real architectures. In Pro-
ceedings of the 20th annual workshop on Microprogramming (1987), pp. 40—
53.

HART, J. C., CARR, N., KAMEYA, M., TIBBITTS, S. A., AND COLEMAN,
T. J. Antialiased parameterized solid texturing simplified for consumer-level
hardware implementation. 1999 SIGGRAPH / Eurographics Workshop on
Graphics Hardware (August 1999), 45-53.

HEIDRICH, W., AND SEIDEL, H.-P. Realistic, hardware-accelerated shading
and lighting. Proceedings of SSIGGRAPH 99 (August 1999), 171-178.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. Appli-
cations of pixel textures in visualization and realistic image synthesis. 71999
ACM Symposium on Interactive 3D Graphics (April 1999), 127-134. ISBN
1-58113-082-1.

JAQUAYS, P., AND HOOK, B. Quake 3: Arena shader manual, revision 10. In
Game Developer’s Conference Hardcore Technical Seminar Notes (Decem-
ber 1999), C. Hecker and J. Lander, Eds., Miller Freeman Game Group.

KAuTz, J., AND MCCOOL, M. D. Interactive rendering with arbitrary brdfs
using separable approximations. Eurographics Rendering Workshop 1999
(June 1999). Held in Granada, Spain.

KELLER, A. Instant radiosity. Proceedings of SSIGGRAPH 97 (August 1997),
49-56.

KYLANDER, K., AND KYLANDER, O. S. Gimp: The Official Handbook.
The Coriolis Group, 1999.

MaX, N., DEUSSEN, O., AND KEATING, B. Hierarchical image-based ren-
dering using texture mapping hardware. Rendering Techniques ’99 (Proceed-
ings of the 10th Eurographics Workshop on Rendering) (June 1999), 57-62.

McCooL, M. D., AND HEIDRICH, W. Texture shaders. 1999 SIGGRAPH /
Eurographics Workshop on Graphics Hardware (August 1999), 117-126.

OLANO, M., HART, J. C., HEIDRICH, W., MCCOOL, M., MARK, B., AND
PROUDFOOT, K. Approaches for procedural shading on graphics hardware:
Course notes. In Proceedings of SIGGRAPH 2000 (July 2000).

OLANO, M., AND LASTRA, A. A shading language on graphics hardware:
The PixelFlow shading system. Proceedings of SIGGRAPH 98 (July 1998),
159-168.

OPENGL ARB. Extension specification documents. http://www.opengl.org-
/Documentation/Extensions.html, March 1999.

PIXAR. The RenderMan Interface Specification: Version 3.1. Pixar Anima-
tion Studios, September 1999.

SEGAL, M., AKELEY, K., FRAZIER, C., AND LEECH, J. The OpenGL
Graphics System: A Specification (Version 1.2.1). Silicon Graphics, Inc.,
1999.

SGI TECHNICAL PUBLICATIONS.
Technical Publications, 1998.
SiMs, K. Particle animation and rendering using data parallel computation.
Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August 1990),
405-413.

UPSTILL, S. The RenderMan Companion. Addison-Wesley, 1989.

Cosmo 3D Programmer’s Guide. SGI

Level-of-Detail Shaders

Marc Olano, Bob Kuehne *

Abstract

Current graphics hardware can render objects using simple
procedural shaders in real-time. However, detailed, high-
quality shaders will continue to stress the resources of hard-
ware for some time to come. Shaders written for film pro-
duction and software renderers may stretch to thousands of
lines. The difficulty of rendering efficiently is compounded
when there is not just one, but a scene full of shaded ob-
jects, surpassing the capability of any hardware to render.
This problem has many similarities to the rendering of large
models, a problem that has inspired extensive research in
geometric level-of-detail and geometric simplification. We
introduce an analogous process for shading, shader simplifi-
cation. Starting from an initial detailed shader, shader sim-
plification produces a new shader with extra level-of-detail
parameters that control the shader execution. The resulting
level-of-detail shader, can automatically adjust its rendered
appearance based on measures of distance, size, or impor-
tance as well as physical limits such as rendering time budget
or texture usage.

CR categories and subject descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image generation — Display al-
gorithms; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Color, shading, shadowing and tex-
ture.

Keywords: Interactive Rendering, Rendering Systems,
Hardware Systems, Procedural Shading, Languages, Multi-
Pass Rendering, Level-of-Detail, Simplification, Computer
Games, Reflectance & Shading Models.

1 INTRODUCTION

Procedural shading is a powerful technique, first explored
for software rendering in work by Cook and Perlin [10, 35],
and popularized by the RenderMan Shading language [20].
A shader is a simple procedure written in a special purpose

*email:{olano, rpk }@sgi.com

SGl

7 -

Figure 1: LOD shader upholstering a Le Corbusier chair.

high-level language that controls some aspect of the appear-
ance of an object to which it is applied. The term shader is
used generically to refer to procedures that compute surface
color, attenuation of light through a volume (as with fog),
light color and direction, fine changes to the surface posi-
tion, or transformation of control points or vertices.

Recent graphics hardware can render simple procedural
shaders in real-time [4, 5, 31, 33, 34, 36]. Shaders that ex-
ceed the hardware’s abilities for rendering of a single object
must be rendered using multiple passes through the graph-
ics pipeline. The resulting multi-pass shaders can achieve
real-time performance, but many complex shaders in a single
scene can easily overwhelm any graphics hardware. Even for
shaders that execute in a single rendering pass, the number
of textures or combiner stages used can affect overall perfor-
mance [31].

Consider a realistic shader for a leather chair. Features of
this shader may include an overall leather texture or bump
map, a couple of measured BRDFs (bidirectional reflectance
distribution functions) for worn and unworn areas on the
seat, bumps for the stitching, with dust collected in the
crevices, scuff marks, changes in color due to variations in
the leather, and potentially even more. Such a shader can
provide a satisfying interactive rendering of the seat for de-
tailed examination, but is overkill as you move away to see
the rest of the room and all the other, buildings, trees and
pedestrians using shaders of similar complexity. Figure 1
does not have all the features described, but with a bump
map and measured leather BRDF it still exceeds current sin-
gle pass rendering capabilities.

In this paper, we introduce level-of-detail shaders (LOD
shaders) to solve the problem of providing both interactive
performance and convincing detailed shading of many ob-
jects in a scene. A level-of-detail shader automatically ad-
insts the shadine comnlexitv hased on one or more innnt na-

9

rameters, providing only the detail appropriate for the current
viewing conditions and resource limits. We present a general
framework for creating a level-of-detail shader from a de-
tailed source shader which could be used for automatic LOD
shader generation. Finally, we provide details and results
from our building-block based level-of-detail shader tools,
where the general framework for shader simplification has
been manually applied to building-block functions used for
writing complex shaders.

1.1 Background

This work is directly inspired by the body of research on
geometric simplification. Specifically, many of our shader
simplification operations are modeled after operations from
the topology-preserving geometric level-of-detail literature.
Schroeder and Turk both performed early work in auto-
matic mesh simplification using a series of local operations,
each resulting in a smaller total polygon count for the entire
model [39, 41]. Hoppe used the collapse of an edge to a sin-
gle vertex as the basic local simplification operation. He also
introduced progressive meshes, where all simplified versions
of a model are stored in a form that can reconstructed to any
level at run-time [24]. These ideas have had a large influence
on more recent polygonal simplification work ([16, 22, 25]
and many others).

Many shader simplifications involve generating textures to
stand in for one or more other shading operations. Guenter,
Knoblock and Ruf replaced static sequences of shading op-
erations with pre-generated textures [19]. Heidrich has an-
alyzed texture sizes and sampling rates necessary for accu-
rate evaluation of shaders into texture [32]. In a related vein,
texture-impostor based simplification techniques replace ge-
ometry with pre-rendered textures, either for indoor scenes
as has been done by Aliaga [2] or outdoor scenes as by Shade
et al. [40].

We also draw on the body of BRDF approximation meth-
ods. Like shading functions, BRDFs are positive every-
where. Fournier used singular value decomposition (SVD) to
fit a BRDF to sums of products of functions of light direction
and view direction for use in radiosity [13]. Kautz and Mc-
Cool presented a similar method for real-time BRDF render-
ing, computing functions of view, light, or other bases as tex-
tures using either SVD or a simpler normalized integration
method [27]. McCool, Ang and Ahmad’s homomorphic fac-
torization uses only products of 2D texture lookups, fit using
least-squares [29]. In a related area, Ramamoorthi and Han-
rahan used a common set of spherical harmonic basis tex-
tures for reconstructing irradiance environment maps [37].

This work is also directly derived from efforts to antialias
shaders. The primary form of antialiasing provided in the
RenderMan shading language is a manual transformation of
the shader, relying on the shader-writer’s knowledge to ef-
fectively remove high-frequency components of the shader
or smooth the sharp transitions from an if, by instead us-
ing a smoothstep (cubic spline interpolation between two
valnes) or filtersten (smoothsten across the cnrrent sam-

ple width) [11]. Perlin describes automatic use of blending
where if is used in the shading code [11]. Heidrich and
his collaborators also did automatic antialiasing, using affine
arithmetic to compute the shading results and estimate the
frequency and error in the results [23].

Finally, there have been several researchers who have done
more ambitious shader transformations. Goldman described
multiple versions of a fur shader used in several movies,
though switches between realfur and fakefur were only done
between shots [18]. Kajiya was the first to pose the problem
of converting large-scale surface characteristics to a bump
map or BRDF representation [26]. Along this line, Fournier
used nonlinear optimization to fit a bump map to a sum of
several standard Phong peaks [12]. Cabral, Max and Spring-
meyer addressed the conversion from bump map to BRDF
through a numerical integration pre-process [7], and Becker
and Max solved it for conversion from RenderMan-based
displacement maps to bump maps and then to a BRDF rep-
resentation [6]. More recently, Apodaca and Gritz manu-
ally created a hierarchy of filtered level-of-detail textures [3],
while Kautz approached the problem in reverse, creating
bump maps to statistically match a chosen fractal micro-facet
BRDF [28].

This work is set within the context of recent advances
in interactive shading languages, motivating the need for
shaders that can transition smoothly from high quality to fast
rendering. The first such system by Rhoades et al. was a
relatively low-level language for the Pixel-Planes 5 machine
at UNC [38]. This was followed by Olano and collabora-
tors with a full interactive shading language on UNC’s Pix-
elFlow system [33]. Peercy and coworkers at SGI created a
shading language that runs using multiple OpenGL Render-
ing passes [34]. The work presented here uses their OpenGL
Shader ISL language as the format for both input shaders and
LOD shader results.

There are many emerging options for assembler-level in-
terfaces to hardware accelerated shading, including offerings
by NVIDIA and ATI as well as a shading interface within Di-
rectX [4, 5, 30, 31]. The shading group at Stanford, led by
Kekoa Proudfoot and Bill Mark, created another high-level
real-time shading language that can be compiled into either
multiple rendering passes or a single pass using NVIDIA or
ATT hardware extensions [36]. A group at 3DLabs, led by
Randi Rost, is also spearheading an effort to create a high-
level shading language for OpenGL version 2.0.

2 USING LOD SHADERS

Using a single LOD shader that encapsulates the progression
of levels of detail provides many of the advantages for sim-
plified shaders that progressive meshes provide for geome-
try. The following directly echos the points from Hoppe’s
original progressive mesh paper [24].

o Shader simplification: The LOD shader can be gener-
ated automatically from an initial complex shader using
antomatic tools (thoneh as in the earlv davs of mesh

7-10

simplification, these tools are not yet as automatic as
we would like).

e LOD approximation: Like a progressive mesh, an LOD
shader contains all levels of detail. Thus it can in-
clude the shader equivalent of Hoppe’s geomorphs to
smoothly transition from one level to the next.

e Progressive transmission and compression: The rep-
resentation of a shader is much smaller than that of a
mesh. Even relatively complex RenderMan shaders are
typically only a few thousand lines of code. Shaders for
real-time are seldom more complex than several tens
of lines of code. Yet a scene with thousands of LOD
shaders may still benefit by first storing and sending the
simplest levels followed by transmission of the more
complex levels.

e Selective Refinement: Selective refinement for meshes
refers to simplifying some portions of the mesh more
than others based on current viewing conditions, en-
compassing both variation across the object and a
guided decision on which of the stored simplifications
to apply. For an LOD shader these aspects are treated
independently. Current hardware does not realize any
benefit from shading variations across a single object,
but a single LOD shader will present a high quality ap-
pearance on some surfaces while using a lower quality
for others, based on distance, viewing angle or other
factors. The LOD shader may also apply certain sim-
plifications and not others based on pressure from hard-
ware resource limits. For example, if available texture
memory is low, texture-reducing simplification steps
may be applied in one part of the shader while leav-
ing more computation-heavy portions of the shader to
be rendered at full detail.

Many of these points depend on the storage of an LOD
shader. Starting from a complex shader we create a series
of simplification operations to produce the most simplified
shader, represented as another shader in the source shading
language. This combined shader includes all of the levels
within a single shading function with additional level con-
trol parameters. This provides several practical advantages
as the LOD shader is indistinguishable, beyond its additional
parameters, from a non-LOD shader. Since OpenGL Shader
(and most other shading systems) set shader parameters by
name, with default values for unset parameters, LOD shaders
are easily interchanged with other shaders. For example, this
can allow easy drop in replacement of the covering on a car
seat, from a simple stand-in to a non-LOD vinyl shader, an
LOD leather shader, or an LOD fabric shader.

The set of level-control parameters are the one aspect
that distinguishes the interface to an LOD shader from other
shaders. For interchangeable use the parameter set should be
agreed upon by both the application and shader simplifier.
These narameters are nsed within the T.OD shader to switch

FB=diffuse(); FB=diffuse();
if (time<10)

FB*=texture ("tex"); FB*=texture ("tex");

a) basic block b) split blocks

Figure 2: Candidate blocks. a) a single basic block that could be
simplified. b) blocks split by a conditional — will not be merged to-
gether

and blend between different levels as well as to define the
ranges where each level is valid. As with geometric level-of-
detail, parameter choices may include distance to the object,
approximate screen size of the rendered object, importance
of the object, or available time budget. For shading, we may
also add budgets for hardware resource limits such as texture
memory availability. Many of these parameters could instead
be collected into a single aggregate parameter, or controlled
through an optimization function as done by Funkhouser and
Séquin [15]. All examples in this paper use a single parame-
ter set using a distance metric.

3 SIMPLIFICATION FRAMEWORK

Shader simplification creates an LOD shader from an arbi-
trary source shader. We describe the simplification process
in terms of four stages. First, identify candidate blocks of
shader code. Second, produce a set of simplified versions of
the candidate blocks. Third, associate level parameters with
the simplified blocks, and finally assemble the result into an
LOD shader. These stages can be repeated to achieve fur-
ther simplification, where two or more simplified blocks can
be combined into a single larger candidate block for another
simplification run.

3.1 Finding Candidate Blocks

The first step toward creating an LOD shader is identifying
blocks of shader code that are candidates for simplification.
These are like edges for edge-collapse based polygonal sim-
plification. Finding the set of candidate blocks in a shader is
slightly more complicated than finding the set of edges in a
model, but can be done with a static analysis of the original
shader code.

A static analysis is one done before actual execution; it
only has access to what can be inferred from the source code
itself. In particular, results for conditionals and loops involv-
ing compile-time constants are known (uniform in ISL par-
lance), but not ones that might change at run-time (param-
eter in ISL). As a result, choosing a static analysis restricts
simplification possibilities to what can be done within a ba-
sic block, without crossing a run-time loop or conditional
(Figure 2).

Each block within the shader has some variables that are
input to the computations within the block and others that
are results computed by the block. Expressions within the
block form a dependence graph with operations represented
as nodes in the graph and variables as edges linking operation
to oneration. This eranh can he partitioned into snhoranhs

7-11

Figure 3: Removal of operations as contributions become imper-
ceptible. Top row, left to right: Close-up of torus mapped with detail
dust and scratch textures, with dust and scratches removed, with
specular mask removed. Bottom row, left to right: image sequence
of the wood applied to a cone with each removal displayed at it's
expected switching distance.

where each subgraph computes one block output or interme-
diate result. These subgraphs are the candidate blocks for
simplification. Any basic block can be partitioned in many
ways, and the choice of block partitioning is somewhat anal-
ogous to choosing edges for mesh simplification.

3.2 Simplifications

Each of the candidate blocks described above computes one
result based on a set of inputs. The simplification operations
on this block perform a local substitution of a simpler form
in place of the original, producing equivalent output while
keeping the form of the total shader the same. Simplifica-
tions that are not lossy are handled by the shading compiler
optimization [19, 33, 34, 36].

Simplifications are chosen by matching a set of heuristic
rules. While logically separate, the selection of simplifica-
tion rules and partitioning of the basic block can be done at
the same time using a tool like iburg [14]. Iburg is a com-
piler tools designed for use in code generation. Given a piece
of code represented as an expression tree, it finds the least
cost cover by a set of rules through a bottom-up dynamic
programming algorithm.

Finding simplification rule costs for use by iburg requires
analysis of input textures as well as the shader itself, and
application of a rule may require generating a new derived
texture as part of the LOD shader generation pre-process.

We classify these rule-based substitutions into one of four
forms.

Remove: A candidate block that doesn’t contribute
enough anymore, or that consists of only high-frequency ele-
ments above the Nyquist frequency is replaced by a constant.
This effectively removes the effect of portions of the shader
that are no longer significant (Figures 3,4).

Collanse: A candidate block congisting of several onera-

Figure 4: Band-limited Perlin noise texture, noise at a distance, and
noise replaced with average value

Figure 5: Collapsing two texture operations into a single texture.
Left to right, the two initial textures, the two textures transformed
and overlaid, the collapsed texture result, and an example of the col-
lapsed texture in use as dust and scratch wood detail.

tions may be merged into a single new operation. For exam-
ple, a coarse texture and a rotated and repeated detail texture
can be combined into a single merged texture of a new size
(Figure 5).

Substitute: A candidate block identified as implement-
ing a known shading method may be replaced by a simpler
method with similar appearance. For example, a bump map
can be replaced by a gloss map to modulate the highlight
intensity, or a simple texture map (Figure 6). A texture in-
dexed by the surface normal is probably part of a lighting
model, and depending on the contents of the texture, may
be replaced by the built-in diffuse lighting model. Similarly,
a texture indexed by the half angle vector (norm(V + L) for
view vector V and light vector L) is a candidate for replace-
ment by one or more applications of the built-in Phong spec-
ular model. A texture can be replaced by a smaller low-pass
filtered version of the texture and a constant representing the
removed high-frequency terms.

Approximate: Approximation rules treat the candidate
block as a general function to be approximated. They can
theoretically be applied to any block, though not always as
effectively as the application-specific rules.

While a variety of function approximation methods are
possible, we have focused on ones developed for BRDF ap-
proximation [27, 29]. As these methods are texture-based,
they are most useful when total texture usage is not the limit-
ing factor. Two issues prevent our approximation rules from
being more generally useful, though we believe they are as-
pects of the approximations we chose to explore and not all
annlicable fuinction annroximation methods

7-12

Figure 6: Replacing a bump map with a texture. Left to right, the
original bump map, the bump texture at full scale, and the bump map
and texture at the expected switching distance.

First, these approximations are based on a factorization
into products or sums of products of functions of two vari-
ables that can be stored in a texture. In the right coordinate
system, BRDFs are well suited to this factorization, usually
requiring only one or two terms. Automatic simplification
calls for automatic determination of a coordinate system.
Arbitrary shading expressions can also be poorly suited to
such a factorization in any coordinate system, allowing no
acceptable approximation by the homomorphic factorization
method, or needing so many SVD terms as to become more
expensive than the original expression.

Second, the least squares or singular value decomposi-
tion problems are stated in terms of matrices with a num-
ber of rows and columns equal to the total number of tex-
els in each approximating texture. Computing these textures
rapidly scales to gigabytes, even for modest component tex-
ture sizes. Worse, we want to speculatively compute the
approximations to evaluate their fitness. The original ap-
plication to BRDFs limited the component texture sizes to
32x32 or 64x64 resulting in computations with 1024x1024
to 4096x4096 matrices.

3.3 Level Parameters

Selection of simplified verses unsimplified blocks is based
on one or several level parameters. For example, switching
from a band-limited noise texture to a constant value should
happen when the changes in the noise texture are no longer
visible (Figure 4). That point can be approximated based ei-
ther on the distance or screen size of the object. The same
transition can also be triggered by a lack of available render-
ing time, or a lack of available texture memory to store the
noise texture.

To manage these different level parameters, we can asso-
ciate a range for each parameter with each simplified block.
Using the noise example above, a constant should be used
instead of the noise texture whenever the available texture
memory is less than the size of the texture, or there is not
enough time to render another texture, or the expected map-
ping to screen pixels will blur the band-limited noise away.

3.4 Assemble

Given the simplified blocks and level parameter ranges, it
is straightforward to assemble them with appropriate condi-
tionals info an T.0OD shader Renderino-metric level narame-

Shader Level 1 Level 2 Level 3
Plastic (Collapse) 36.4,27.6 | 44.5,34.4 — —
Wood (Remove) 18.4,11.6 | 189,119 | 19.1,64.3
Leather (Replace) 254,14.1 | 43.7,25.3 | 79.8,64.3

Table 1: Result times for test LOD shaders on the 1772 triangle
chair model performed on an SGI Octane MXE. Each table entry in-
cludes frames-per-second for a small window size, and a large win-

dow size with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3
Plastic (Collapse) 52.9,33.8 | 68.2,42.1 —_
Wood (Remove) 20.7,9.2 | 23.0,10.0 | 25.2,10.7
Leather (Replace) 30.7,12.3 | 55.2,22.8 | 140.9, 80.3

Table 2: Result times for test LOD shaders on a 3280 triangle
draped cloth model consisting of 40 length-82 triangle strips, per-
formed on an SGI Octane MXE. Each table entry includes frames-
per-second for a small window size, and a large window size with 4x
the rendered pixels.

ters, like distance or screen coverage, are shared by all blocks
in the shader, each emitting a statement of the form

if (distance < low_threshold)
do_simplified_block

else if(distance < high_threshold)
do_transition_block

else
do_original_block

For resource-accounting level parameters (e.g. available
time or texture memory) the blocks are prioritized, and com-
parisons are emitted for the total consumed by this block and
all higher priority blocks.

4 RESULTS

We have described a general theory of shader simplification.
Our current results are a modest start within this framework.
Specifically, we have produced a set of LOD-aware build-
ing block functions for shader construction. This style of
shader writing is similar to Abram and Whitted’s graphical
building-block shader system [1]. Example building-blocks
include bump map, a BRDF model, Fresnel reflectance,
or noise or turbulence textures with a lookup as used by
Hart [21].

Our LOD blocks were created by manually following the
steps described in our simplification framework: identify
candidate blocks within a building block function, apply one
of the simplification rules described in Section 3.2, associate
it with a range of an aggregate level parameter, and cre-
ate conditional blocks for the original code, transition code
and simplified code. Despite the manual simplification, we
call this semi-automatic because any shaders written using
the building blocks, either knowing about level-of-detail or
not, become LOD shaders by switching to the LOD building
bhlocks

7-13

Shader Level 1 Level 2 Level 3
Plastic (Collapse) 92,11.2 | 11.8,14.0 —
Wood (Remove) 3.6,5.3 4.1,5.8 45,6.5
Leather (Replace) 64,88 | 14.7,18.7 | 27.7,35.7

Table 3: Result times for test LOD shaders on the 1772 triangle
chair model performed on an SGI O2. Each table entry includes
frames-per-second for a small window size, and a large window size

with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3
Plastic (Collapse) 13.6,15.9 | 18.2,20.4 _
Wood (Remove) 49,69 54,7.6 6.0, 8.5
Leather (Replace) 8.1,10.3 | 19.8,23.9 | 40.3,52.3

Table 4: Result times for test LOD shaders on the 3280 triangle
draped cloth model performed on an SGI O2. Each table entry in-
cludes frames-per-second for a small window size, and a large win-
dow size with 4x the rendered pixels.

Tables 1-4 show LOD shader timing in frames per second
for several sample LOD shaders. Each shader demonstrates
several transitions of specific LOD simplification operations.
The Wood shader used in these tests first removes an over-
lay scratch texture, then removes a specular masking opera-
tion, creating three levels-of-detail. Figure 3 shows the re-
moval LOD sequence. The Plastic shader demonstrates the
collapse simplification by taking two textures, each applied
with its own transformation, and merging these two separate
texture passes in a third texture. This resultant texture is then
used to shade the object in a single texture for lower levels-
of-detail as shown in Figures 5 and 7. The Leather shader
demonstrates the replace simplification in the first level-of-
detail by replacing a true bump map with a simple texture.
The second level in the Leather removes the texture with a
simple constant color. Results of this operation sequence are
seen in Figure 9.

An overview of the performance results shows much what
we would expect — that less detailed shaders result in faster
overall rendering. However, as the different results indicate,
the shading operations are not purely fill-limited, and render-
ing nearly 4x fewer pixels in certain cases results in only a
modest performance improvement. As certain passes occur,
the object’s geometry is also re-rendered, yielding a coupling
between type of rendering passes constructed for a particular

Figure 8: Two replace simplifications in a bumpy leather shader.

shader and that shader’s. This implies that LOD shaders can
accomplish only part of the task, and should also be accom-
panied by geometric simplification.

5 CONCLUSIONS AND FUTURE WORK

We have presented LOD shaders: procedural shaders that au-
tomatically adjust their level of shading detail for interactive
rendering. We also presented a general framework for shader
simplification — the process of creating LOD shaders from
an ordinary shader. This framework is sufficiently general
to serve as a guide for manual shader simplification or as a
basis for automatic simplification. Finally, we presented our
results for semi-automatic shader simplification using man-
ually generated shading function building blocks for SGI’s
OpenGL Shader. These LOD shader building blocks imple-
ment the same functions as building blocks already provided
with OpenGL Shader, but with added level-of-detail param-
eters to control aspects of their shading complexity.

In the future, we would like to create tools for fully au-
tomatic shader simplification. Our current simplification
framework also only considers a static analysis of the shader
for simplification. Following the lead of texture-based sim-
plification researchers like Aliaga and Shade et al., we could
generate new textures on the fly warping them for use over
several frames or updating when they become too differ-
ent [2, 40].

Logically, it should be possible to generalize our remove,
collapse and substitution rules into a more widely applica-
ble approximation rule form. Other function fitting methods
should be tried to make the approximation rules more useful.

Since rendering with LOD shaders will usually be accom-
panied by geometric level-of-detail, they should be more
closely linked. Cohen et al. Garland and Heckbert and
others have shown that geometric simplification can be af-
fected by appearance [8, 17]. Shader simplification should
also be affected by geometric level-of-detail (e.g. whether
per-vertex Phong shading is a good substitute for a texture-
based illumination depends on how the object is tessellated).

Finally, we provide no guarantees on the fidelity of our
simplifications. Many geometric simplification algorithms
have been successful without providing exact error metrics
or bounds. However, algorithms such as simplification en-
velopes by Cohen et al. provide hard bounds on the amount
of error introduced by a simplification [9], guarantees that
are important for some users. Further investigation is neces-

7-14

6 ACKNOWLEDGMENTS

The Le Corbusier chair was modeled by Jad Atallah, JLA
Studio and distributed by 3dcafe.com. The Porsche data

was

distributed by 3dcafe.com. The leather BRDF is

from Michael McCool, fit by homomorphic factorization
to data from the Columbia-Utrecht Reflectance and Texture
Database. The car paint BRDF also from Michael McCool,
fit to data for Dupont Cayman lacquer from the Ford Motor
Company and measured at Cornell University.

We’d also like to thank Dave Shreiner for his helpful com-
ments on the drafts paper.

References

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

ABRAM, G. D., AND WHITTED, T. Building block shaders. In
Computer Graphics (Proceedings of SIGGRAPH 90) (Dallas, Texas,
August 1990), vol. 24, pp. 283-288. ISBN 0-201-50933-4.

ALIAGA, D. G. Visualization of complex models using dynamic
texture-based simplification. In IEEE Visualization '96 (October
1996), IEEE, pp. 101-106. ISBN 0-89791-864-9.

APODACA, A. A., AND GRITZ, L. Advanced RenderMan, first ed.
Morgan Kaufmann, 2000.

ATI. Pixel Shader Extension, 2000. Specification document, avail-
able from http://www.ati.com/online/sdk.

ATI. Vertex Shader Extension, 2001. Specification document, avail-
able from http://www.ati.com/online/sdk.

BECKER, B. G., AND MAX, N. L. Smooth transitions between
bump rendering algorithms. In Proceedings of SIGGRAPH 93 (Ana-

heim, California, August 1993), Computer Graphics Proceedings,
Annual Conference Series, pp. 183—-190. ISBN 0-201-58889-7.

CABRAL, B., MAX, N., AND SPRINGMEYER, R. Bidirectional re-
flection functions from surface bump maps. In Computer Graphics

(Proceedings of SIGGRAPH 87) (Anaheim, California, July 1987),
vol. 21, pp. 273-281.

COHEN, J., OLANO, M., AND MANOCHA, D. Appearance-
preserving simplification. In Proceedings of SIGGRAPH 98 (Or-
lando, Florida, July 1998), Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH / Addison Wesley, pp. 115—
122. ISBN 0-89791-999-8.

COHEN, J., VARSHNEY, A., MANOCHA, D., TURK, G., WEBER,
H., AGARWAL, P., JrR., F. P. B., AND WRIGHT, W. Simplifica-
tion envelopes. In Proceedings of SIGGRAPH 96 (New Orleans,
Louisiana, August 1996), Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH / Addison Wesley, pp. 119—
128. ISBN 0-201-94800-1.

CoOK, R. L. Shade trees. In Computer Graphics (Proceedings
of SIGGRAPH 84) (Minneapolis, Minnesota, July 1984), vol. 18,
pp- 223-231.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND
WORLEY, S. Texturing and Modeling, second ed. Academic Press,
1998.

FOURNIER, A. Normal distribution functions and multiple surfaces.
In Graphics Interface *92 Workshop on Local Illumination (May
1992), Canadian Information Processing Society, pp. 45-52.

FOURNIER, A. Separating reflection functions for linear radiosity. In
Proceedings of Eurographics Workshop on Rendering (Dublin, Ire-
land, June 1995), pp. 296-305.

FRASER, C. W., HANSON, D. R., AND PROEBSTING, T. A. Engi-
neering a simple, efficient code generator generator. ACM Letters on
Programming Languages and Systems 1, 3 (September 1992), 213—
226.

FUNKHOUSER, T. A., AND SEQUIN, C. H. Adaptive display al-
gorithm for interactive frame rates during visualization of complex
virtual environments. In Proceedings of SIGGRAPH 93 (Anaheim,
California, August 1993), Computer Graphics Proceedings, Annual
Conference Series, pp. 247-254. ISBN 0-201-58889-7.

GARLAND, M., AND HECKBERT, P. S. Surface simplification us-
ing quadric error metrics. In Proceedings of SIGGRAPH 97 (Los
Angeles, California, August 1997), Computer Graphics Proceedings,
Annual Conference Series, ACM SIGGRAPH / Addison Wesley,
nn 200216 TSRN 1-RQ791-R0A-7

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

GARLAND, M., AND HECKBERT, P. S. Simplifying surfaces with
color and texture using quadric error metrics. In IEEE Visualization
’98 (October 1998), IEEE, pp. 263-270. ISBN 0-8186-9176-X.

GOLDMAN, D. B. Fake fur rendering. In Proceedings of SSIGGRAPH
97 (Los Angeles, California, August 1997), Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIGGRAPH / Addison
Wesley, pp. 127-134. ISBN 0-89791-896-7.

GUENTER, B., KNOBLOCK, T. B., AND RUF, E. Specializing
shaders. In Proceedings of SIGGRAPH 95 (Los Angeles, California,
August 1995), Computer Graphics Proceedings, Annual Conference
Series, ACM SIGGRAPH / Addison Wesley, pp. 343-350. ISBN
0-201-84776-0.

HANRAHAN, P., AND LAWSON, J. A language for shading and light-
ing calculations. In Computer Graphics (Proceedings of SSGGRAPH
90) (Dallas, Texas, August 1990), vol. 24, pp. 289-298. ISBN 0-201-
50933-4.

HART, J. C., CARR, N., KAMEYA, M., TIBBITTS, S. A., AND
COLEMAN, T. J. Antialiased parameterized solid texturing sim-
plified for consumer-level hardware implementation. In 71999 SIG-
GRAPH / Eurographics Workshop on Graphics Hardware (Los An-
geles, California, August 1999), ACM SIGGRAPH / Eurographics /
ACM Press, pp. 45-53.

HECKBERT, P., ROSSIGNAC, J., HOPPE, H., SCHROEDER, W.,
Soucy, M., AND VARSHNEY, A. Multiresolution surface model-
ing. In SIGGRAPH 1997 Course Notes (August 1997), Computer
Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH
/ Addison Wesley.

HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P. Sampling
procedural shaders using affine arithmetic. 158-176. ISSN 0730-
0301.

HoOPPE, H. Progressive meshes. In Proceedings of SIGGRAPH 96
(New Orleans, Louisiana, August 1996), Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIGGRAPH / Addison
Wesley, pp. 99-108. ISBN 0-201-94800-1.

HoPPE, H. View-dependent refinement of progressive meshes. In
Proceedings of SIGGRAPH 97 (Los Angeles, California, August
1997), Computer Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH / Addison Wesley, pp. 189-198. ISBN 0-89791-
896-7.

KAIYA, J. T. Anisotropic reflection models. In Computer Graph-
ics (Proceedings of SIGGRAPH 85) (San Francisco, California, July
1985), vol. 19, pp. 15-21.

KAuTzZ, J., AND McCooL, M. D. Interactive rendering with ar-
bitrary brdfs using separable approximations. In Eurographics Ren-
dering Workshop 1999 (Granada, Spain, June 1999), Springer Wein /
Eurographics.

KAUTZ, J., AND SEIDEL, H.-P. Towards interactive bump mapping
with anisotropic shift-variant brdfs. 2000 SIGGRAPH / Eurographics
Workshop on Graphics Hardware (August 2000), 51-58.

McCooL, M. D., ANG, J., AND AHMAD, A. Homomorphic factor-
ization of brdfs for high-performance rendering. In Proceedings of
SIGGRAPH 2001 (August 2001), Computer Graphics Proceedings,
Annual Conference Series, ACM Press / ACM SIGGRAPH, pp. 171-
178. ISBN 1-58113-292-1.

MICROSOFT. DirectX Graphics Programmers Guide, directx 8.1 ed.
Microsoft Developers Network Library, 2001.

NVIDIA. NVIDIA OpenGL Extensions Specifications, March 2001.

OLANO, M., HART, J. C., HEIDRICH, W., LINDHOLM, E., McC-
CooL, M., MARK, B., AND PERLIN, K. Real-time shading. In
SIGGRAPH 2001 Course Notes (August 2001).

OLANO, M., AND LASTRA, A. A shading language on graphics
hardware: The pixelflow shading system. In Proceedings of SIG-
GRAPH 98 (Orlando, Florida, July 1998), Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIGGRAPH / Addison
Wesley, pp. 159-168. ISBN 0-89791-999-8.

PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J. In-
teractive multi-pass programmable shading. In Proceedings of SIG-
GRAPH 2000 (July 2000), Computer Graphics Proceedings, Annual
Conference Series, ACM Press / ACM SIGGRAPH / Addison Wes-
ley Longman, pp. 425-432. ISBN 1-58113-208-5.

PERLIN, K. An image synthesizer. In Computer Graphics (Pro-
ceedings of SIGGRAPH 85) (San Francisco, California, July 1985),
val 19 nn 2R7-70A

Figure 9: Car paint LOD shader using LOD versions of OpenGL Shader's microfacetBRDF and hdrFresnel building block functions.

[36]

[37]

(39]

[40]

[41]

PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND HANRA-
HAN, P. A real-time procedural shading system for programmable
graphics hardware. In Proceedings of SIGGRAPH 2001 (August
2001), Computer Graphics Proceedings, Annual Conference Series,
ACM Press / ACM SIGGRAPH, pp. 159-170. ISBN 1-58113-292-1.

RAMAMOORTHI, R., AND HANRAHAN, P. An efficient representa-
tion for irradiance environment maps. In Proceedings of SSIGGRAPH
2001 (August 2001), Computer Graphics Proceedings, Annual Con-
ference Series, ACM Press / ACM SIGGRAPH, pp. 497-500. ISBN
1-58113-292-1.

RHOADES, J., TURK, G., BELL, A., STATE, A., NEUMANN, U.,
AND VARSHNEY, A. Real-time procedural textures. In 7992 Sympo-
sium on Interactive 3D Graphics (March 1992), vol. 25, pp. 95-100.
ISBN 0-89791-467-8.

SCHROEDER, W. J., ZARGE, J. A., AND LORENSEN, W. E. Dec-
imation of triangle meshes. In Computer Graphics (Proceedings of
SIGGRAPH 92) (Chicago, Illinois, July 1992), vol. 26, pp. 65-70.
ISBN 0-201-51585-7.

SHADE, J., LISCHINSKI, D., SALESIN, D. H., DEROSE, T. D,
AND SNYDER, J. Hierarchical image caching for accelerated walk-
throughs of complex environments. In Proceedings of SIGGRAPH
96 (New Orleans, Louisiana, August 1996), Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIGGRAPH / Addison
Wesley, pp. 75-82. ISBN 0-201-94800-1.

TURK, G. Re-tiling polygonal surfaces. In Computer Graphics (Pro-
ceedings of SIGGRAPH 92) (Chicago, Illinois, July 1992), vol. 26,
pp. 55-64. ISBN 0-201-51585-7.

Interactive Shading Language (ISL)
Language Description
Version 2.4
March 26, 2002

Copyright 2000-2002, Silicon Graphics, Inc. ALL RIGHTS RESERVED

UNPUBLISHED -- Rights reserved under the copyright laws of the United States. Use of a copyright notice is precautionary only and
does not imply publication or disclosure.

U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND:

Use, duplication or disclosure by the Government is subject to restrictions as set forth in FAR 52.227.19(c)(2) or subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and/or in similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd. Mountain View, CA 94039-7311.

l. Introduction
. Files
[ll. Data types
IV. Variables and identifiers
V. Uniform operations
VI. Parameter operations
VII. Varying operations
VIII. Built-in functions
IX. Variable declarations
X. Statements
XI. Functions

l. Introduction

ISL is a shading language designed for interactive display. Like other shading languages,
programs written in ISL describe how to find the final color for each pixel on a surface.
ISL was created as a simple restricted shading language to help us explore the
implications of interactive shading. As such, the language definition itself changes often.
While this may be a snapshot specification for ISL, ISL is not proposed as a formal or
informal language standard. Shading language design for interactive shading is still an
open area of research.

A. Features in common with other shading languages

The final pixel color comes from the combined effects of two function types. A light

shader computes the color and intensity for a light hitting the surface. Light shaders can
be used for ambient, distant and local lights. Several light shaders may be involved in
finding the final color for a single pixel. A surface shader computes the base surface color
and the interaction of the lights with that surface. The term shaderis used to refer to either
of these special types of function.

All shading code is written with a single instruction, multiple data (SIMD) model. ISL
shaders are written as if they were operating on a single point on the surface, in isolation.
The same operations are performed for all pixels on the surface, but the computed values
can be different at every pixel.

Like other shading languages that follow the SIMD model, ISL data may be declared
varying or uniform. Varying values may vary from pixel to pixel, while uniform values must
be the same at every pixel on the surface.

B. Major differences from other shading languages

ISL has several differences and limitations that distinguish it from more full-featured
shading languages:

 The primary varying data type in ISL is limited to the range [0,1]. Results outside this
range are clamped.

« ISL does not allow texture lookups based on computed results.

« ISL does not allow user-defined parameters that vary across the surface. Such
parameters must either be computed or loaded as texture.

ISL is also different from most other shading languages in that more than one surface
shader may be applied to each surface. The shaders are applied in turn and may
composite or blend their results. ISL no longer supports explicit atmosphere shaders. Any
light transmission effects between the surface and eye can be handled in the final shader
applied to each surface.

The appearance of a shaded surface is defined by one or more ISL surface shaders and
possibly one or more ISL light shaders. Each shader is defined in its own ISL source files,
which should have the file name extension .isl.

A. File contents

Only one shader definition (whether light or surface) can appear in each .isl file. The .isl file
may include C preprocessor-like #include directives to get access to functions or global
variable definitions stored in another file.

Comments in isl may be either C or C++-style (/*comment */or // comment to end
of line)

B. File compilation

There are two ways to compile a set of ISL files into the rendering passes used to
compute surface appearance. The first is to use the ISL run-time library. The second is to
use the command line compiler and translator. Both are documented in the shader(1)
man page. The ISL Library consists of a set of C++ classes that enable an application to
compile that appearance consisting of ISL shaders into an OpenGL stream. The
compiled appearance can be associated with geometry from the application, and
rendered to an OpenGL rendering context opened by the application. The ISL compiler,
islc, converts a set of ISL files into a pass description (.ipf) file. Information on running islc
can be found on the islc(1) man page. The pass description file can be converted either to
C OpenGL code with the command line translator ipf2ogl (see the ipf2ogl(1) man page),
or to a Performer pass file with the command line translator ipf2pf (shipped with
Performer 2.4 or later).

lll. Data types

All ISL data is classified as either varying, parameter or uniform. Varying data may hold a
different value at each pixel. Parameter data must have the same value at every pixel on
a surface, but can differ from surface to surface or from frame to frame. Changes to
varying or parameter data do not require recompiling the shader. Uniform data also has
the same value at every pixel on the surface, but changes to uniform data only take effect
when the shader is recompiled.

The complete list of ISL data types is:

uniform uf and pf are each a single floating point value
float uf

parameter
float pf

uniform uc and pc are each a set of four floating point values, representing

color uc |a color, vector or point. For colors, the components are ordered
red, green, blue and alpha. For points, the components are ordered
X,y,Z and w.

parameter
color pc

varying vc is a four element color, vector or point that may have different

color vc |values at each pixel on the surface. Elements of the color are
constrained to lie between 0 and 1. Negative values are clamped to
zero and values greater than one are clamped to one

uniform umand pm are each a set of sixteen floating point values,
matrix um |representing a 4x4 matrix in row-major order (all four elements of
first row, all four elements of second row, ...)

parameter
matrix pm

uniform us is a character string, used for texture names.
string us

ISL also allows 1D arrays of all uniform and parameter types, using a C-style

specification:

uniform float

ufais an array with n uniform float point elements,

ufalnl] ura[0] through ufa[n-1]
parameter float ufais an array with n parameter float point elements,
praln] pfa[0] through pfa[n-1]

uniform color
ucal[n]

uca is an array with n uniform color elements, uca[0]
through uca [n-1].

parameter color
ucalnl]

pca is an array with n parameter color elements, pca[0]
through pca[n-1].

uniform matrix
uma [n]

uma is an array with n uniform matrix elements, uma [0]
through uma [n-1]

parameter matrix
pma [n]

pma is an array with n parameter matrix elements, pma [0]
through pma [n-1]

uniform string
usa [n]

usa is an array with n uniform string elements, usa [0]

through usa[n-1]

IV. Variables and identifiers

Identifiers in ISL are used for variable or function names. They begin with a letter, and
may be followed by additional letters, underscores or digits. For example a, abc, C93d,
and d_e_f are all legal identifiers.

Several variables are predefined with special meaning:

varying color FB

Current frame buffer contents. This is the intermediate
result location for almost all varying operations.

parameter matrix
shadermatrix

Arbitrary matrix associated with the shader at
compile time. This may be used to control the
coordinate space where the shader operates.

parameter color
lightVector

Within a light shader, the direction the light is shining.
This vector may be modified by the light shader.
Within a surface shader, the direction of the most
recent light.

uniform float pi

The math constant.

uniform float

numambientlights

Number of ambient lights in the current
islAppearance.

uniform float
numdirectlights

Number of direct lights (= both local and distant
lights) in the current islAppearance.

V. Uniform operations

In the following, uf and uf0- ur15 are uniform floats; ufa is an array of uniform floats;
uc, ucO and uc1 are uniform colors; uca is an array of uniform colors; um, um0 and um1
are uniform matrices; uma is an array of uniform matrices; us, us0 and us1 are uniform
strings; usa is an array of uniform strings; and ur, uro and uri1 are uniform relations.

A. uniform float

Operations producing a uniform float:

variable
reference

Value of uniform float variable.

float constant

One of the following non-case-sensitive patterns:
0xH (hex integer);

00 (octal integer);

D;D.; .D;D.D;

DeSD; D.eSD; .DeSD; D.DeSD

Where
H=1 or more hex digits (0-9 or a-f)
o= 1 or more octal digits (0-7)
D=1 or more decimal digits (0-9)

S =+, - or nothing

[(uf) Grouping intermediate computations.

|-uf Negate uf

lufo + ufl)Add ufoand uf1

lufo - uf1 'Subtract uf1 from ufo

lufo * ufl Multiply ufo and uf1

lufo / ufl Divide ufo by uf1

uclur0] Gives channel fioor (uf0) of color uc, where red is channel 0,

green is channel 1, blue is channel 2 and alpha is channel 3.

|um[uf0][uf1]

Gives element f1loor (4*uf0 + uf1) of matrix um

uraluf] Element floor (uf) of array ura where element 0 is the first
element.
Behavior is undefined if f1oor (uf0) falls outside the array.
|f(. ..)]Function call to a function returning uniform float result

Uniform float assignments take the following forms, where Ivalue is either a uniform float

variable or a floating point element from a variable (var [ur0] for a uniform color or a
uniform float array, var [uf0] [uf1] for a uniform matrix or uniform color array or
var [uf0] [ufl] [ufr2] for a uniform matrix array):

|lvalue

Simple assignment

|lvalue += uf

’EquabntK)lvalue = lvalue + uf

|lvalue -=

’Equabntu)lvalue = lvalue — uf

7-21

|lvalue *= uf ’EquwentK)lvalue = lvalue * uf

|lvalue /= uf ‘EqumentK)lvalue = lvalue / uf

B. uniform color

Operations producing a uniform color:

\variable reference \Value of uniform color variable

lcolor (uf0, ufl,uf2,uf3) |red=uf0; green-ufl; blue=uf2; alpha=ut3

luf \color (uf, uf, uf, uf)

| (uc) \Grouping intermediate computations

-uc Each uniform float operation is applied component-

by-component
ucO + ucl

ucO - ucl

ucO * ucl

ucO0 / ucl

|um[uf] |ROW floor (uf) of matrix um

uca [uf] Element f1loor (uf) of array uca, where element 0 is
the first element.

Behavior is undefined if f1oor (ur0) falls outside

the array.

£(...) Function call to a function returning uniform color
result

Uniform color assignments take the following forms, where Ivalueis either a uniform
color variable or a color element from a variable (var [uf0] for an element of a color
array or row of a uniform matrix or var [uf0] [uf1] for a uniform matrix array):

|lvalue = uc Simple assignment

|lvalue += uc ‘EqumentK)lvalue = lvalue + uc
|lvalue -= uc ’EqMVmentK)lvalue = lvalue - uc
|lvalue *= yc ’Eqmvwentk)lvalue = lvalue * uc
|lvalue /= uc ‘EqumentK)lvalue = lvalue / uc

Color elements can also be set individually. See section A above.

C. uniform matrix

Operations producing a uniform matrix:
\variable reference \Value of uniform matrix variable

7-22

matrix (uf0,ufl,uf2,uf3, |Matrix with rows (uf0, ufl,uf2,uf3),
(uf4,uf5,ur6,ur7), (uf8,ur9,ur10,urll)
ur4,ufrb5,ufe6,ur7, and (ufi2,ufl3,ufl4,ufl>5)
uf8,uf9,urli0,ufll,
url2,ufrl3,url4,urlb)

uf matrix(uf,0,0,0, 0,uf,0,0, 0,0,uf,O0,
0,0,0,uf)

| (um) \Grouping intermediate computations

- um Each uniform float operation is applied component-

by-component
um(O + uml

umO - uml

um0 * uml Matrix multiplication:

result[1i][k] = sum_, ;(umO[i][F] *
uml[7F][k])

uma [uf] Element floor (uf) of array uma where element 0
is the first element.

Behavior is undefined if f1oor (ur0) falls
outside the array.

£(...) Function call to a function returning uniform matrix
result

Uniform matrix assignments take the following forms, where Ivalue is either a uniform
matrix variable or one element of a uniform matrix array variable, accessed as var [uf]:

|lvalue = um]Simple assignment

|lvalue += um \Equivalent to Ivalue = lvalue + um
|lvalue -= um \Equivalent to Ivalue = lvalue - um
|lvalue *= um]Equivalent to Ivalue = lvalue * um

Matrix elements can also be set individually. See sections A and B above.

E. uniform string

Operations producing a uniform string:

variable Value of uniform string variable
reference
|constant string |String inside double quotes ("string")
usal[uf] Element floor (uf) of array usa where element 0 is the first
element.
Behavior is undefined if f1oor (ur0) falls outside the
array.

|f(. ..) |Function call to a function returning uniform string result
Strings can include escape sequences beginning with "\":

| character sequence | name

\o Octal character code

\xH Hex character code

\n Newline

\t Tab

\v \Vertical tab

\b Backspace

\r Carriage return

\f IForm feed

\a Alert (bell)

A\ IBackslash character

\? /Question mark

N\ Single quote

A\ IEmbedded double quote

Uniform string assignments take the following forms, where Ivalue is either a uniform string
variable or one element of an uniform string array variable, accessed by var [uf]:

|1value = us Simple assignment

F. uniform relations

Operations producing a uniform relation (used in control statements discussed later):

ur0 == Traditional comparisons: equal, not equal, greater or equal, less or
ufl equal, greater, and less

uro I=
ufl

urQ >=
url

urg <=
ufl

urf0 > ufl

urf0 < ufl

ucQ == True if all elements of uco are equal to the corresponding elements of
ucl ucl

ucO = true if any elements of uc0 does not equal the corresponding element
ucl of uci

um0 == True if all elements of um0 are equal to the corresponding elements of
uml uml

um0 1= True if any elements of um0 does not equal the corresponding element
uml of umi

us0 == Traditional string comparison: equal and not equal
usl

us0 =
usl

| (ur) \Grouping intermediate computations

url0 && True if both uro and uri are true
url

ur0 || True if either uro or uri are true
url

tur True if uris false

It is not possible to save uniform relation results to a variable.

VI. Parameter operations

In the following, pf and pf0- p£15 are parameter floats; pfais an array of parameter

floats; pc, pc0 and pc1 are parameter colors; pca is an array of parameter colors; pm,
pm0 and pm1 are parameter matrices; and pma is an array of parameter matrices. Also,
uf0and url are uniform floats and ucis a uniform color as defined above.

A. parameter float

Operations producing a parameter float:

variable Value of parameter float variable.
reference
luf IConvert uniform float to parameter float.
| (pf) \Grouping intermediate computations.
|-pf Negate pf
lpf0 + pfl IAdd p£foand p£1
Ipf0 - pfl 'Subtract p£1 from p£0
Ipf0 * pfl Multiply p£0 and p£1
lp£0 / pfl Divide p£0 by p£1
pc[pf0] Gives channel floor (pf0) of color pc, where red is channel 0,
green is channel 1, blue is channel 2 and alpha is channel 3.
|pm [p£0] [p£I]]Gives element floor (4*pf0 + pf1) of matrix pm

7-25

prfaluf] Element floor (uf) of array pra where element 0 is the first
element. Note that currently the array index must be uniform.

Behavior is undefined if f1oor (uf0) falls outside the array.
|f(. ..)]Function call to a function returning parameter float result

Parameter float assignments take the following forms, where I1valueis either a
parameter float variable or a floating point element from a variable (var [uf0] for a
parameter float array):

\lvalue = pf Simple assignment

|lvalue += pf ‘EqumentK)lvalue = lvalue + pf
|lvalue -= pf ’EquabntK)lvalue = lvalue - pf
|lvalue *= pf]Equivalent to Ivalue = Ivalue * pf
|lvalue /= pf ‘Equivalent to Ivalue = Ivalue / pf

B. parameter color

Operations producing a parameter color:

\variable reference \Value of parameter color variable

luc |Convert uniform color to parameter color.

lcolor (pf0, pfl, pf2,p£f3) |red=pf0; green=pf1; blue=pf2; alpha=p£3

|pf |color (pf, pf, pt, pf)

| (pc) \Grouping intermediate computations

-pcC Each parameter float operation is applied
component-by-component

pcO0 + pcl

pcO - pcl

pcO * pcl

pcO / pcl

|pm [pf] |ROW floor (pf) of matrix pm

pca [uf] Element floor (uf) of array pca, where element 0 is
the first element. Note that currently the array index
must be uniform.

Behavior is undefined if f1oor (uf0) falls outside

the array.

£(...) Function call to a function returning parameter color
result

Parameter color assignments take the following forms, where 1valueis either a
parameter color variable or a color element from a variable (var [uf0] for an element of

7-26

a color array):

|1value = pc Simple assignment

|lvalue += pc]Equivalent to Ivalue = lvalue + pc
|lvalue -= pc]Equivalent to Ivalue = Ilvalue - pc
|lvalue *= pc \Equivalent to Ivalue = lvalue * pc
|lvalue /= pc ‘Equivalent to Ivalue = lvalue / pc

Unlike uniform colors, parameter colors cannot currently be set by element.

C. parameter matrix

Operations producing a parameter matrix:
\variable reference \Value of parameter matrix variable
lum IConvert uniform matrix to parameter matrix.

matrix(pf0,pfl,pf2,pf3, |Matrix with rows (pfr0,pfl,pf2,pf3),
(pf4,pt5,pt6,pt7), (p£8,pt9,pr10,pr11)

pf4,pf5,pf6,pf7, and (pf12,pf13,pf14,pf15)
pf8,pf9,pf10,pf11,
pfl2,pfl13,pf14,pf15)
pf matrix(pf,0,0,0, 0,pf,0,0, 0,0,pf,0,
0,0,0,pf)
| (pm) \Grouping intermediate computations
-pm Each parameter float operation is applied
component-by-component
om0 + pml
om0 - pml
om0 * pml Matrix multiplication:

result[i] [k] = sum,_, ; (umO[1i] [F] *
uml [F][k])
pma [uf] Element floor (uf) of array pma where element 0

is the first element. Note that currently the array
index must be uniform.

Behavior is undefined if f1oor (ufro) falls
outside the array.

(...) Function call to a function returning parameter
matrix result

Parameter matrix assignments take the following forms, where Ivalue is either a
parameter matrix variable or one element of a parameter matrix array variable, accessed
as var[uf].

|lvalue = pm]Simple assignment

|lvalue += pm]Equivalent to lvalue = lvalue + pm

lvalue -= pm Equivalentto Ivalue = lvalue - pm
q

|lvalue *= pm]Equivalent to Ivalue = Ivalue * pm

Unlike uniform matrices, parameter matrices cannot currently be set by element.

D. Parameter relations

Operations producing a parameter relation closely parallel the uniform relations covered
earlier. They can be used in control statements discussed later:

pf0 == Traditional comparisons: equal, not equal, greater or equal, less or
pfl equal, greater, and less

pf0 =
pfl

pf0 >=
pfl

pf0 <=
pfl

pf0 > pfl

pf0 < pfl

pcO == True if all elements of pc0 are equal to the corresponding elements of
pcl pcl

pcO = true if any elements of pc0 does not equal the corresponding element
pcl of pc1

pm0 == True if all elements of pm0 are equal to the corresponding elements of
pml pml

pm0 = True if any elements of pm0 does not equal the corresponding element
pml of pm1

| (pr) (Grouping intermediate computations

pr0 && True if both pro and pri are true
prl

pro || True if either pro or pri are true
pril

|!pr |True if pris false

It is not possible to save parameter relation results to a variable.
VIl. Varying operations

7-28

In the following, vcis a varying color. Also, p£0 and pf1 are parameter floats and pcis a
parameter color as defined above.

A. varying color

Operations producing a varying color:

variable Value of varying color variable
reference

Note: when a varying variable is used, texgen value of -3 is
passed to the application geometry drawing function (see the
description under texture ()). While the geometry drawing
function may choose to act on this value, OpenGL Shader will
set the texture generation mode appropriately.

pc Convert parameter color to varying, clamping the resulting color
to [0,1]. After this conversion, every pixel has its own copy of the
color value.

Possible targets for varying assignments are:
[FB |All channels of the framebuffer

FB. C|Set only some channels, leaving the others alone. Cis a channel specification,
consisting of some combination of the letters r,g,b and ato select the red,
green, blue and alpha channels. Each letter can appear at most once, and
they must appear in order. This can be used to isolate individual channels:
FB.r,FB.g, FB.b, FB. a, or to select arbitrary groups of channels: FB. rgb,
FB.rb, FB. ga.

Varying assignments into the framebuffer can take the following forms, where Ivalueis
FBor FB. C (as described above):

FB = Function call to a function returning varying color result
£(...)

All varying functions also implicitly have access to the value of FB
when the function is called.

Except for certain built-in functions explicitly noted later, varying
functions can only be assigned directly into all channels of the
framebuffer. To combine the results of a varying function with the
existing frame buffer contents, you must save the existing frame
buffer into a variable. For example:

| NO | OK
varying color a = FB;
FB.r = £();FB = £();
FB.bga = a;

lvalue = |Copy vcinto Ivalue
ve

lvarue += |Add, subtract, or multiply Ivalue and ve, putting the result in
lvalue.
1lvalue —=
Assigniffients intg varying variables can only take this form:
varighle_=|FB ICopy framebuffer to variable
vc

B. varying relations

Operations producing a varying relation (used in control statements discussed later):

FB[vrO0] Traditional comparisons: equal, not equal, greater or equal, less or
== vf] |equal, greater, and less
Performs per-pixel comparison between frame buffer channel uro
FB[vi0] and reference value ufr1. Frame buffer channel 0 is red, channel 1 is
!= vfl |green, channel 2 is blue and channel 3 is alpha.
FB[vfO]
>= vfl
FB[vrO0]
<= vfl
FB[vf0] >
vfl
FB[vfO] <
vl

It is not possible to save varying relation results to a variable.

VIil. Built-in functions

The following is the set of provided functions returning uniform results.

uniform float abs (uniform absolute value of x
float x)

parameter float
abs (parameter float x)

uniform float acos (uniform |inverse cosine, radian result is between 0 and
float x) pi

parameter float
acos (parameter float x)

uniform float asin(uniform |inverse sine, radian result is between -pi/2
float y) and pi/2

parameter float
asin(parameter float y)

uniform float atan (uniform
float 1)

parameter float
atan (parameter float 1)

inverse tangent, radian result is between -pi/2
and pi/2

uniform float atan (uniform
float y; uniform float x)

parameter float
atan (parameter float y;
parameter float x)

inverse tangent of y/x, radian result is
between -pi and pi

uniform float ceil (uniform
float x)

parameter float
ceil (parameter float x)

round x up (smallest integer i >= x)

uniform float clamp (uniform
float x; uniform float a;
uniform float b)

parameter float
clamp (parameter float x;
parameter float a;
parameter float b)

clamp x to lie between a and b

uniform float cos (uniform
float r)

parameter float
cos (parameter float r)

cosine of rradians

uniform float exp (uniform
float x)

parameter float
exp (parameter float x)

uniform float floor (uniform
float x)

parameter float
floor (parameter float x)

round x down (largest integer i <= x)

uniform matrix
inverse (uniform matrix m)

matrix inverse
m*inverse (m) =
identity matrix

inverse (m) *m =

7-31

parameter matrix
inverse (parameter matrix
m)

uniform float log(uniform
float x)

parameter float
log (parameter float x)

natural log of x

uniform float max(uniform
float x; uniform float y)

parameter float
max (parameter float x;
parameter float y)

maximum of x and y

uniform float min (uniform
float f; uniform float g)

parameter float
min (parameter float f£;
parameter float g)

minimum of x and y

uniform float mod (uniform
float n; uniform float d)

parameter float
mod (parameter float n;
parameter float d)

Remainder of division n/d
n - d*floor (n/d)

uniform matrix
perspective (uniform float

matrix to perform perspective projection
looking down the Z axis with a field of view of

d) ddegrees.
matrix (cotan(d/2), 0, o, 0,
parameter matrix 0, cotan(d/2),0, O,
perspective (parameter 0, 0, 1, 1,
float d) 0, 0, -2,0)
uniform float pow (uniform <Y

float x; uniform float y)

parameter float
pow (parameter float x;
parameter float y)

uniform matrix
rotate(uniform float x;
uniform float y; uniform
float z; uniform float r)

rotate rradians around axis (x, y, z)

parameter matrix
rotate (parameter float x;
parameter float y;
parameter float z;
parameter float r)

uniform float round (uniform
float x)

parameter float
round (parameter float x)

round x to the nearest integer

uniform matrix scale(uniform
float x; uniform float y;
uniform float =z)

parameter matrix
scale (parameter float x;
parameter float y;
parameter float =z)

matrix(x,0,0,0,
0,0,0,1)

O/_Y/ 0/ 0/ 0/ 0/ Zy O/

uniform float sign(uniform
float x)

parameter float
sign (parameter float x)

sign of x: -1, 0 or 1

uniform float sin(uniform
float r)

parameter float
sin (parameter float r)

sine of rradians

uniform float
smoothstep (uniform float
a; uniform float b;
uniform float x)

parameter float
smoothstep (parameter
float a; parameter float
b; parameter float x)

smooth transition between 0 and 1 as x
changes from ato b.

Oforx < a 1forx > b

uniform color spline(uniform
float x; uniform color

cll)

uniform float spline(uniform
float x; uniform float
cll)

evaluate Catmull-Rom spline at x based on
control point vector, c.

A Catmull-Rom spline passes through all
of the control points. The derivative of the
curve at each control point is half the
difference between the next and previous
control points. The full curve is covered
between x=0and x=1

7-33

parameter color
spline (parameter float x;
parameter color cl])

parameter float
spline (parameter float x;
parameter float cl[])

uniform float sqrt(uniform |square root of x
float x)

parameter float
sqgrt (parameter float x)

uniform float step(uniform |0 for x<a
float a; uniform float x) |1 for x>=a

parameter float
step (parameter float a;
parameter float x)

uniform float tan(uniform tangent of rradians
float r)

parameter float
tan (parameter float r)

uniform matrix matrix(1,0,0,0, 0,1,0,0, 0,0,1,0,
translate(uniform float x;|x,y,z,1)
uniform float y; uniform
float z)

parameter matrix
translate (parameter float
x; parameter float y;
parameter float =z)

The following is the set of provided functions returning varying color results.

varying color texture(|Map texture onto surface, using texture coordinates

uniform string defined with object geometry. Versions with array
texturename[; textures are 1D texturing only (using the s texture
parameter matrix coordinate).

xtorm/; Optional float texgen (>= 0) is passed to the
uniform float geometry drawing function so it can generate a
texgen]]) different (application defined) set of per-vertex

texture coordinates. If texgen is not given, a value

varying color texture(|of 0 will be passed to the geometry drawing
uniform float function

texturearrayll [;
parameter matrix
xform/[;

uniform float
texgen]])

varying color texture (
uniform color
texturearrayl] [;
parameter matrix
xform/[;

uniform float
texgen]])

Optional matrix xformis a matrix for
transforming the texture coordinates. If xformis
not given, the identity matrix is used (i.e. texture
coordinates are used as given).

Note: negative texgen values are used for
built-in texture generation modes. These negative
values are also passed to the geometry drawing
function. While the geometry drawing function may
choose to act on these value, OpenGL Shader will
set the texture generation mode appropriately.

| textureuse |texgen code
|texture () | >=0
project () -
lenvironment () | -2
\varying variable use | -3

varying color
environment (
uniform string
texturename [;
parameter matrix
xform])

varying color
environment (
uniform float
texturearrayl] [;
parameter matrix
xform])

varying color
environment (
uniform color
texturearrayll [;
parameter matrix
xform])

Map texture onto surface, as a spherical
environment map. Versions with array textures are
1D texturing only (using the s texture coordinate).

Optional matrix xformis a matrix for
transforming the texture coordinates. For example,
it can be used to set the map up direction. If xform
is not given, the identity matrix is used (i.e. texture
coordinates are used as generated).

Note: environment also passes a texgen
value of -2 to the application geometry drawing
function.

varying color project (
uniform string
texturename [;
parameter matrix
xform])

varying color project (
uniform float
texturearrayll [;

Project texture onto surface using parallel
projection down the Z axis. Versions with array
textures are 1D texturing only (using the X
coordinate only).

Optional matrix xformis a matrix for
transforming before projection. For example, to
project in shader space, use
inverse (shadermatrix). If xformis not given,
the identity matrix is used.

7-35

parameter matrix
xform])

varying color project(
uniform color
texturearrayll [;
parameter matrix
xform])

Note: project () also passes a texgen value
of -1 to the application geometry drawing function.

varying color
transform(parameter
matrix xform)

Transform the varying color in the frame buffer by
the given matrix

varying color
lookup (parameter
float lutl])

varying color
lookup (parameter
color Iutll])

Lookup each frame buffer channel in the given
lookup table.

Each channel is handled independently, so the
resulting red component of the result comes from
the red component 1ut [n*FB. r]. Similarly, for
green from lut [n*FB.g] and blue from
lut [n*FB.b]

varying color
blend (varying color
V)

Channel by channel blend: FB* (1-v) + v =
v*(1-FB) + FB

varying color
over (varying color v)

Alpha-based blend of FBover v:
v*(1-FB.a) + FB*FB.a

varying color
under (varying color
V)

Alpha-based blend of FBunder v:
FB*(l1-v.a) + v*v.a

varying color
setupLight (
parameter float
lightnum)

Configure a specific light for subsequent diffuse or
specular calculations. After being called, the global
lightVectoris set with the current light's position.
Light shaders can modify 1ightVector within their
body

varying color ambient ()

\Return sum of ambient light hitting surface

varying color ambient (
uniform float
1ightnum)

Return result of ambient light 1ightnum

If 1ightnum<0 or
lightnum>=numambientlights, ambient()
returns black

varying color diffuse()

IReturn sum of diffuse light hitting surface

varying color diffuse(
uniform float
1ightnum)

Return result of diffuse contribution from light
lightnum

If 1ightnum<0 or
lightnum>=numdirectlights, diffuse() returns
black

diffuse(1ightnum) is equivalent to

7-36

setupLight (1ightnum);
runDiffuse (lightVector);

varying color Calculate diffuse effects of previously configured
runDiffuse (light (configured by using setupLight). Accepts a
parameter color parameter 1vector to specifiy the light position.
lvector) Use the global 1ightVector to accept the value
set by previous code or the setupLight routine.
test
varying color Return sum of specular light hitting surface, using e
specular (parameter as the exponent in the Phong lighting model
float e)
Return result of specular contribution from light
lightnum
varying color specular (If 1ightnum<0 or
] lightnum>=numdirectlights, specular() returns
uniform float black
lightnum,
parameter float e) specular(1ightnum, €) is equivalent to
setupLight (1ightnum);
runSpecular (e, 1ightVector);
varying color Calculate specular effects of previously configured
runSpecular (light (configured by using setupLight). Accepts the
parameter float e; parameter e as the exponent in the Phong lighting
parameter color model.Accepts a parameter 1vector to specifiy
lvector) the light position. Use the global 1ightVectorto
accept the value set by previous code or the
setupLight routine.

IX. Variable declarations

A variable declaration is a type name followed by one (and only one) variable name.
Each variable name may optionally be followed by an initial value. Some examples:

uniform float fvar;

uniform float farrayl[3];
uniform float fvar = 3;
parameter matrix = 1;
uniform string = "mytexture"
varying color cvar;

Variable and functions names are bound using static scoping rules similar to ¢. The same
name cannot occur more than once within the same block of statements (bounded by '{'
and '}'), but can be redefined within a nested block:

| not legal | legal |

uniform float x; uniform float x;
uniform float x; {
} uniform color x;

}

X. Statements

In the following, ufis a uniform float, uris a uniform relation and vris a varying relation
as defined above.

Legal ISL statements are:

|assignment; Performs assignment

variable Creates and possibly initializes variable
declaration;

{list of 0 or Executes statements sequentially
more
statements}

if (ur) statement |Execute statement only if uniform relation ur or parameter
relation pris true
if (pr) statement

if (ur) statement |Execute first statement if uror pris true, and second
else statement |statementif uror pris false.

if (pr) statement
else statement

if (vr) statement |Restricts the currently active set of pixels to those where
the given varying relation is true. The active set of pixels
starts as all visible pixels within the shaded object, but may
be restricted by one or more i f statements.

Note: Any variable of any type assigned inside a varying
1£ should only be used inside the i . The contents outside
the if are undefined, and may change from release to
release. Assignments into FB are still OK.

if (vr) statement |The first statement executes with the same restricted set of

else statement |pixels as the previous ir statement. The second statement
executes with the active pixels restricted to those that were
active when the i f statement was reached but where the
varying relation was false.

Note: Any variable of any type assigned inside a varying
1£ should only be used inside the i . The contents outside
the if are undefined, and may change from release to
release. Assignments into FB are still OK.

7-38

repeat (uf) repeat statement max (0, f1oor (uf)) or
statement max (0, floor (pf)) times.

repeat (pf)
statement

Xl. Functions

Every function has this form:
type function_name (formal parameters) { body }

The type is one of the ordinary types or a shader type:

Surface appearance. Should compute the base surface color and
surface lighting contribution (though calls to ambient (), diffuse () and
specular ()).

Equivalent to surface. Atmospheric effects like fog are handled in
the last surface shader in the shader list.

ambientlight [Light contributing to ambient () function.

distantlight is a light shining down the z axis. It is transformed
by shadermatrix, which can be used by the application to point
the light in other directions. Within the body of a distant1ight,
lightVector gives the light direction. It is initialized to
shadermatrix[2], but can be changed by the shader.
pointlight is a light positioned at the origin. It is transformed by
shadermatrix, which can be used by the application to point the
light in other directions. Within the body of a point1ight,
lightVector gives the light direction. It is initialized to
shadermatrix[3], but can be changed by the shader.

atmosphere

distantlight

pointlight

Distant and point lights return the varying color and intensity of
light falling on a surface. They do not compute the interaction of
light with the surface itself, that interaction is computed in the
surface shader through the di ffuse () and specular ()
functions, or through setupLight () and runDiffuse () and
runSpecular

The set of formal parameter declarations are a semi-colon separated list of uniform
variable declarations, with initial values. Initial values are required for all formal parameters.
For shaders, the initial values are interpreted as defaults for any variable not set explicitly
by the application. Arrays in the formal parameter list for a shader are not currently visible
to the application. The initial values for parameters of ordinary functions are not currently
used, but they are still required.

The body is just a list of statements. The result of each shader is just the value left in FB
when the shader exits.

The last statement of any function should be the special statement
return value;,.

The return statement can only appear as the last statement in a function, and the type
of value should match the function type. For functions returning a varying color, the
returnis optional. If returnis omitted on a varying color function, the function return
value is the value of FBat the end of the function.

Surface shaders return a varying color giving the final color of the surface. At the start of
the shader, FB contains the color of the closest surface previously seen at each pixel.
Shaders with transparency should handle any blending with this existing color. In order for
surfaces with varying opacity to work, it is also necessary that the application and/or
scene graph sort transparent surfaces, and surfaces with varying opacity should be
treated as transparent.

Atmosphere shaders start with B set to the final rendered color for each pixel. They
return the attenuated color.

An example shader:
surface shadertest (

uniform color ¢ = color(1,0,0,1);
uniform float £ .25)

FB = diffuse();
FB *= c*f;
return FB;

Chapter 8

Complex Single and Multi-Pass Shading
Bill Mark

Stanford Real-Time Procedural Shading System

SIGGRAPH 2002 Course Notes
William R. Mark, April 4, 2002

The Stanford real-time procedural shading system compiles shaders written in a high-level shading
language to graphics hardware. In particular, the system can compile to graphics hardware with
programmable vertex and fragment pipelines.

Some of the key features of the system are:

e The user writes shaders in a high-level, hardware-independent shading language.

® The shading language supports multiple computation frequencies. These computation
frequencies — fragment, vertex, and primitive-group — map well to graphics hardware.

¢ The system uses a well-defined internal interface to support a variety of compiler back
ends. A different compiler back end can be used for each computation frequency. Each
compiler back end targets a particular hardware interface (e.g. register-combiner
fragment hardware).

e The system includes compiler back ends that target programmable vertex and fragment
hardware.

We have written two papers that discuss various aspects of our system:

e A Real-Time Procedural Shading System for Programmable Graphics Hardware.
Kekoa Proudfoot, William R. Mark, Zvetoslav Tzvetkov, Pat Hanrahan. SIGGRAPH
2001. This paper describes the complete system.

e Compiling to a VLIW Fragment Pipeline. William R. Mark and Kekoa Proudfoot.
SIGGRAPH/Eurographics Graphics Hardware 2001.

This paper describes the system’s compiler for the register-combiner architecture.

The material in these course notes complements these publications. We have included the
following:

1. An example shader (our bowling-pin shader), and the compiled code that our system
produces for that shader. The compiled code is for a GeForce3 — it includes fragment code
(register-combiner configuration), vertex code (NV_vertex_program code), and primitive-
group code (X86 CPU code).

2. Documentation for our system’s immediate-mode interface. This interface is used to
specify and compile shaders; to specify geometry to be rendered; and to set shader
parameters. This interface is a layer that runs on top of OpenGL.

3. An example program that uses our system’s immediate-mode interface.

4. Documentation for our system’s shading language, with a variety of example shaders.

Additional information is available on our project web page,
http://graphics.stanford.edu/projects/shading.

8-1

Bowling-Pin Shader and Functions Called by It

Bowling-Pin Surface Shader

//

// This shader does the complete bowling pin, and fits into a single pass
// on the GeForce3

//

surface shader float4

bowling_pin (texref basemarks, texref decals, texref bumps, floatd uv) {

// Compute texture coordinates

float4d wuv_wrap = { uv[0], 10 * Pobj[l1l], 0O, 1 };
float4d wuv_label = { 10 * Pobj[0], 10 * Pobj[l], 0, 1 };
matrix4 t_basemarks = invert (translate(2.0, -7.5, 0) * scale (4, 15, 1));
float4 uv_basemarks = t_basemarks * uv_wrap;
float4d uv_bumps = uv_basemarks;
matrix4 t_decals = scale(0.5, 1, 1) *
invert (translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));
floatd4d wuv_front = t_decals * uv_label;
float4 uv_back = {1.0 — uv_front[0], uv_front[1l], uv_front[2], 1};
float front = select (Pobj[2] >= 0, 1, 0) * select(uv[0] > 3, 0, 1);

float4d uv_decals select (front==1, uv_front, uv_back);

// Look up textures

float4 Decals = texture (decals, uv_decals) ;
float4 BaseMarks = texture (basemarks, uv_basemarks);
float Marks = alpha (BaseMarks) ;

float3 Base = rgb (BaseMarks);

// Compute color, primarily by calling separate ‘lightmodel_bumps’ routine
float3 Ma = {.4,.4,.4};

float3 Md = {.5,.5,.5};

float3 Ms = {.3,.3,.3};

float3 Kd rgb ((Decals over {Base, 1.0}) * Marks);

float3 C = lightmodel_bumps (Kd * Ma, Kd * Md, Ms, bumps, uv_bumps);

return {C, 1.0};

}

Light Shader
(the compiled code given later includes one instance of ‘simple_light’)

// helper function for light shader

light float atten (float ac, float al, float aq) {
return 1.0 / (ag * Sdist * Sdist + al * Sdist + ac);

}

light shader float4 simple_light (float4 color, float ac, float al, float aq) {

return color * atten(ac, al, aq);

}

8-2

Bump-map Function Called by Bowling-pin Shader

surface float3
lightmodel_bumps (float3 a, float3 d,

float3 s, texref bumps, floatv uv_bumps)

// Compute normalized tangent-space light vectors
vertex perlight float3 Ltan = tangentspace (L) ;
vertex perlight float3 Htan = tangentspace (H);

// Lookup from bump map

float4 Nlookup = texture (bumps, uv_bumps);

float3 Nbump = 2.0* (rgb (Nlookup)

float N_avglen = Nlookup[3]; // Length of mipmap filtered N, before renorm

// Diffuse

—triple(0.5));

//perlight float3 Lfrag = 2.0* (cubenorm(Ltan)-{.5,.5,.5});
perlight float3 Lfrag = Ltan; // Interpolate

perlight float NdotL
perlight float shadow

dot (Nbump,

Lfragqg);

perlight float3 diff = d * clampOl (NdotL) * clampOl (shadow)

// Specular

perlight float3 Hnorm = normalize ((fragment perlight float3)
perlight float NdotH = clampO1 (dot (Nbump, Hnorm)) ;

perlight float NdotHs = select (Hnorm[2] >= 0, NdotH, 0.0);
perlight float NdotH2 = NdotHs * NdotHs;

perlight float NdotH4 = NdotH2 * NdotH2;

perlight float NdotH8 = NdotH4 * NdotH4;

perlight float3 spec = NdotH8 * shadow * s;

// Combine

perlight float3 C = diff + spec;

return integrate(rgb(Cl) * C) + a;
} // lightmodel_bumps

Other Functions Called by Bowling-pin Shader

surface float3
tangentspace (float3 V) {
// Convert vector to tangent space,
float VtanX = dot (V,T);
float VtanY dot (V,B);
float Vtanz = dot (V,N);

and normalize it

return normalize ({VtanX, VtanY, VtanZ});

}

// Clamp scalar to range [0, 1]

surface clampf clampOl (float x) {return (clampf) x;}

8-3

// alpha has short len

4* (Lfrag([2] + Lfrag[2]); // Geometric shadow ramp

* N_avglen;

Htan);

{

Compiler-Generated Fragment Code for Bowling-Pin Shader
(Register Combiner Configuration)

CLAMPING NOTATION: []

= clamp to [0,1]. {}

x TEXTURE SHADER CONFIG *

STAGE 0O: TEXTURE_2D
STAGE 1: TEXTURE_2D
STAGE 2: TEXTURE_2D
STAGE 3: TEXTURE_CM

TEXREF="'decals'
TEXREF='basemarks"'
TEXREF="bumps"'
TEXREF=CUBENORM

x GLOBAL PASS INPUTS ****x*

VO0.rgb = interpolate(0.5* (Ltan+{1,1,1}));
Vl.rgb = interpolate(Cl);

TO0.rgba = TEXSHADE.rgba

Tl.rgba = TEXSHADE.rgba

T2.rgba = TEXSHADE.rgba

T3.rgb = TEXSHADE.rgb

kkkkkkkkkk*k*x RGB STAGE (*****kkkkkkkkk*

clamp to [-1,1]
COORD= 'uv_decals"'
COORD= 'uv_basemarks'
COORD= 'uv_bumps"
COORD= 'Htan'

KhkkkhkkhkKk kK Kk

ALPHA STAGE

O **xK*kkkkkkkkkk

T3.rgb = {L} L = (2*[T2.rgb]-1) dot (2*[T3.rgbl-1) S0.a = {L} L = T3.b
T2.rgb = {R} R = (2*[T2.rgb]-1) dot (2*[V0.rgb]-1)
* ok ok ok kkkkkkkk RGB S’I‘AGE 1 Kk hkhkhkkkkkkkkkkk Kk ok ok kkkk ok ok ok ALPHA S’I‘AGE 1 Kk kkkkkkkkk kK

L = T0.rgb L = [Z0.a]

R = Tl.rgb * (1-[T0O.aaal) R = [T3.b]
TO.rgb = {M} M =1L+ R V0.a = {M} M = (S0.a < 0.5) 2 L :R
* ok ok ok ok ok ok ok ok ok ok ok RGB STAGE 2 * ok ok ok ok ok ok ok ok ok ok ok kk * ok k ok ok ok ok ok ok ok ok ALPHA STAGE 2 * ok ok ok ok ok ok ok ok ok ok ok Kk
TO.rgb = {L} L = TO.rgb * Tl.aaa V0.a = {L} L =V0.a * V0.a

TO0.a = {R} R =T2.b

KAKKKKKKNKK KKK RGB

Tl.rgb = {0.5*L} L =

Kk kkkkkkkkkk RGB
V0.rgb =
Tl.rgb =

{L} L =
{R} R =

*kkkkkkkxkx*k*x RGB

V0.rgb = {L} L =

PER-STAGE PASS INPUTS
LO.rgb = {0.300000,

STAGE 3

STAGE 4

STAGE 5

0.300000,

KAXKKKKXKKAKXNKKN KKK

TO.rgb

Kk khkKhkhkhkk kK kK kK

Tl.rgb * [T0.aaal
V0.aaa * V0.aaa

Kk hkhkhkhk Kk kK kK kK

VO.rgb * [Tl.aaal

FOR STAGE 6:
0.300000}

KAKKKKKKNK KK KK RGB STAGE 6 R Rk ki ki i

L =

R =
VO.rgb = {M} M =
PER-STAGE PASS INPUTS
LO.rgb = {0.400000,

0.400000,

VO.rgb * T2.aaa
VO.aaa * LO.rgb
L + R

FOR STAGE 7:
0.400000}

kkkkkkkkkk*k* RGB STAGE 7 *****kkkkkkkkk*

L =
R
{M} M

VO.rgb =

* ok k ok ok ok ok ok ok ok ok RGB FINAL
OUT.rgb = [V0.rgb]

Vl.rgb * VO.rgb
TO.rgb * LO.rgb
L + R

STAGE KAKKKKKK KK KK

8-4

KAKKKKK KKK KK

ALPHA STAGE

3 KAKKKAKKKKNK KKK

V0.a = {L} L =V0.a * V0.a

* ok ok kkkkk ok ok ok ALPHA S’I‘AGE 4 Kk kkkkkkkkkkk
L = (2*[V0.b]-1)
R = (2*[V0.b]-1)

Tl.a = {4*M} M =1L+ R

kxKkkxKkkxk*x*x ATPHA STAGE
V0.a = {L} L =Tl.b

5 kkkkkokkokkokkokk

* Tl.a

*hkkkkxkkxkkx*x ATPHA STAGE 6 KAXKKKKKKKKN KKK

*k*kkkkkkx*k*x*x ATPHA STAGE

T oKk kokkokkokkok ok ok ok

* ok k ok k ok k ok ok ok ALPHA FINAL STAGE * Kk ok ok ok ok ok ok ok ok
OUT.a = (1-[z0.a]l)

Compiler-Generated Vertex Code for Bowling-Pin Shader
(NV_vertex_program code)

"constant" registers

[light position]

transpose (invert (affine (__modelview)))

0.

0)

[light color]

[is the light directional?]

[light quadratic attenuation factor]
[light linear attenuation factor]
[light constant attenuation factor]

RCP
MUL
MOV
SGE
MAD
MAD
SLT
MAD
MAD
MUL
SGE
SGE
MIN
MUL
MOV
MOV
DP4
DP4
DP4
DP4
ADD
MOV
MOV
MAD
MAD
MOV
MUL
MOV
MOV
DP4
DP4
DP4
DP4
MOV
MOV
DP3
RSQ
MAD
DP3
RSQ
MUL
DP3
DP3
DP3
DP3
RSQ
MUL

c[0]-c[3] = __projection * _ _modelview
cl4]-c[7] = _ modelview

c[8] = __lightpos
c[9]-c[1l1l] = affine(__modelview)
cl[l2]-c[14] =

c[15] = color

c[l6].x = (__lightpos[3] =
cl[l6].y = ag

cl(le].z = al

clle].w = ac

c[17] = {0.0961539 0 0.25 -0.5}
c[18] = {0 0.192308 0.538462 1}
c[19] = {0 0.0666667 0.5 3}
c[20].x = 10

11vP1.0

DP4 o[HPOS].x, c[0], vI[O0]

DP4 o[HPOS].y, c[l], vI[O0]

DP4 o[HPOS].z, c[2], vI[O0]

DP4 o[HPOS].w, c[3], vI[O0]

DP4 R6.x, cl[4], vI[0] ;

DP4 R6.y, c[5], vI[0] ;

DP4 R6.z, c[6], v[0] ;

DP4 R6.w, c[7], v[O0] ;

MOV R2, R6 ;

RCP R6.x, R6.w ;

MUL R7, R2, R6.x ;

ADD R2, c[8], -R7 ;

MAD R2, c[l6].x, -R2, R2 ;

MOV R6, c[8] ;

MAD R2, c[l6].x, R6, R2 ;

DP3 R6.x, R2, R2 ;

RSQ R6.x, R6.x ;

MUL R6, R2, R6.x ;

DP3 R5.x, c[9], vI[1] ;

DP3 R5.y, c[10], vI[1] ;

DP3 R5.z, c[l1l], vI[1] ;

DP3 R8.x, R5, R5 ;

RSQ R8.x, R8.x ;

MUL R5, R5, R8.x ;

DP3 R1l.x, R6, R5 ;

DP3 R4.x, cl[9], vI2] ;

DP3 R4.y, c[10], vI[2] ;

DP3 R4.z, c[l1l], vI[2] ;

DP3 R8.x, R4, R4 ;

RSQ R8.x, R8.x ;

MUL R4, R4, R8.x ;

DP3 Rl.y, R6, R4 ;

DP3 R3.x, c[12], v[3] ;

DP3 R3.y, c[13], vI[3] ;

DP3 R3.z, c[14], vI[3] ;

DP3 R8.x, R3, R3 ;

RSQ R8.x, R8.x ;

MUL R3, R3, R8.x ;

DP3 Rl.z, R6, R3 ;

DP3 R8.x, R1, Rl ;

RSQ R8.x, R8.x ;

MAD R1, R1, R8.x, c[1l8].wwwx ;
MUL o[COLO].xyz, c[17].w, Rl ;
DP3 R8.x, R2, R2 ;

RSQ R1, R8.x ;

DST R2, R8.x, Rl ;

DP3 Rl.x, R2, c[l6].wzyy ;

END

8-5

RI.
R1,

Xy

cl15],

Rl.x ;

o[COL1l] .xyz,

RI.
RI.
R1
R1
R1
R1
RS
RS
RS.
RS.
R1
R1.
R1
R2
R2
R2.
R2
R1
R1
R1
R1,

Xy
Zy

.2,
<Y
.X,
.X,
<Y
.X,

Zy
Zy

XY,

Zy

LW,
.X,
<Y

Zy

LW,
LX,
vz,
LW,
R8.2z,

v[0].z
R1l.x,
R1l.x,
c[19]
Rl.y,
Rl.y,
Rl.z,
R8.y,
c[18]
R8.x,

c[20]
cl[17].
cl[18].
cl[17]
c[18]
c[18]
c[18]
c[18]

R2.yy
c[1l8].

o[TEX0], RS8.

R2.
R2
R2
R2
R1
R1
R1.
R1

Xy

-V,
.z,
LW,
.X,
-Y,

Zy

LW,

v[4].x
c[20].
c[1l7].
c[18].
cl[17].
c[1l9].
c[1l8].
c[18].

o[TEX1], R1
o[TEX2], Rl

R2.
R2.
R1,
R2.
R2.
R1,
RO
RO
RO.
R1
R1

Xy
Xy

7R7 ’ —
R2.x ;

-R7, R2.

Xy
Xy

R1, R1
R2.x ;

R1, R2.x

.X,
<Y

Zy

.X,
.X,

R1, RS
R1, R4
R1, R3
RO, RO
Rl.x ;

o[TEX3] .xyz,

Rl.x ;

R1 ;

vertex-source
registers

v[0]: __position
v[1l]: __tangent

v[2]: _ _binormal
v[3]: __normal

v[4]: uv

, cl17].y

-c[17].y,

cl18].w,

cl[1l7].y,

Rl.x

c[18].w ;
.w, R8.y ;

R8.z

’

’

cl[17].y ;
Rl.z ;

w, v[4].x ;
-c[18].w,

c[18].w ;
Rl.x ;

X, v[0].xyxx ;

Yy 7
wo;

- XYYZy
LXYXZ,
L XXWX,
L XXXW,
.w, -R2.x

zy i
W

-R1, Rl

z, R2

’

’

R1
R1
R1
R1

’

R1

x, v[0].

Yy i
W
ZYyyw,
XYXZ,
XXWX,
XXXW,
4

i

R7 ;

x, R6

’

RO,

R2
R2
R2
R2

Rl.x ;

Compiler-Generated Primitive-Group Code for Bowling-Pin Shader
(x86 CPU code)

push ebp mov [edi+60h], eax mov eax, [ebx+2Ch]
mov ebp, esp mov eax, [ebp+8h] mov [edi+110h], eax
sub esp, 0x0000000c mov eax, [eax+40h] mov eax, [ebx+30h]
push esi mov eax, [eax] mov [edi+114h], eax
push edi mov [edi+64h], eax mov eax, [ebx+34h]
push ebx mov eax, [ebp+8h] mov [edi+118h], eax
fnstcw [ebp-4h] mov eax, [eax+48h] mov eax, [ebx+38h]
fnclex mov eax, [eax] mov [edi+11Ch], eax
mov edi, [ebp+Ch] mov [edi+68h], eax mov eax, [ebx+3Ch]
mov ebx, [ebp+8h] mov eax, [ebp+8h] mov [edi+120h], eax
mov ebx, [ebx+50h] mov eax, [eax+68h] mov eax, [edi+20h]
mov eax, [ebx] mov eax, [eax] mov [edi+124h], eax
mov [edi], eax mov [edi+6Ch], eax mov [edi+128h], 0x00000000
mov eax, [ebx+4h] mov eax, [ebp+8h] fld [edi+124h]

mov [edi+4h], eax mov eax, [eax+70h] fcomp [edi+128h]

mov eax, [ebx+8h] mov eax, [eax] fnstsw eax

mov [edi+8h], eax mov [edi+70h], eax test eax, 0x00004000
mov eax, [ebx+Ch] mov eax, [ebp+8h] mov eax, 0x3£f800000
mov [edi+Ch], eax mov eax, [eax+60h] jnz 1.0

mov eax, [ebp+8h] mov eax, [eax] xXOor eax, eax

mov eax, [eax+38h] mov [edi+74h], eax 1_0:

mov eax, [eax] lea eax, [edi+24h] mov [edi+12Ch], eax
mov [edi+10h], eax push eax mov eax, [edi+14h]
mov ebx, [ebp+8h] lea eax, [edi+78h] mov [edi+130h], eax
mov ebx, [ebx+30h] push eax mov eax, [edi+18h]
mov eax, [ebx] mov [ebp-Ch], 0x0040105a mov [edi+134h], eax
mov [edi+14h], eax call [ebp-Ch] mov eax, [edi+1Ch]
mov eax, [ebx+4h] add esp, 0x00000008 mov [edi+138h], eax
mov [edi+18h], eax lea eax, [edi+78h] lea eax, [edi+24h]
mov eax, [ebx+8h] push eax push eax

mov [edi+1Ch], eax lea eax, [edi+9Ch] lea eax, [edi+E4h]
mov eax, [ebx+Ch] push eax push eax

mov [edi+20h], eax mov [ebp-Ch], 0x00401672 lea eax, [edi+13Ch]
mov ebx, [ebp+8h] call [ebp-Ch] push eax

mov ebx, [ebx+28h] add esp, 0x00000008 mov [ebp-Ch], 0x004014ba
mov eax, [ebx] lea eax, [edi+9Ch] call [ebp-Ch]

mov [edi+24h], eax push eax add esp, 0x0000000c
mov eax, [ebx+4h] lea eax, [edi+COh] mov ebx, [ebp+10h]
mov [edi+28h], eax push eax mov eax, [edi]

mov eax, [ebx+8h] mov [ebp-Ch], 0x0040120d mov [ebx], eax

mov [edi+2Ch], eax call [ebp-Ch] mov eax, [edi+4h]
mov eax, [ebx+Ch] add esp, 0x00000008 mov [ebx+4h], eax
mov [edi+30h], eax mov ebx, [ebp+8h] mov eax, [edi+8h]
mov eax, [ebx+10h] mov ebx, [ebx] mov [ebx+8h], eax
mov [edi+34h], eax mov eax, [ebx] mov eax, [edi+Ch]
mov eax, [ebx+14h] mov [edi+E4h], eax mov [ebx+Ch], eax
mov [edi+38h], eax mov eax, [ebx+4h] mov eax, [edi+10h]
mov eax, [ebx+18h] mov [edi+E8h], eax mov [ebx+10h], eax
mov [edi+3Ch], eax mov eax, [ebx+8h] mov eax, [edi+24h]
mov eax, [ebx+1Ch] mov [edi+ECh], eax mov [ebx+14h], eax
mov [edi+40h], eax mov eax, [ebx+Ch] mov eax, [edi+28h]
mov eax, [ebx+20h] mov [edi+F0h], eax mov [ebx+18h], eax
mov [edi+44h], eax mov eax, [ebx+10h] mov eax, [edi+2Ch]
mov eax, [ebx+24h] mov [edi+F4h], eax mov [ebx+1Ch], eax
mov [edi+48h], eax mov eax, [ebx+14h] mov eax, [edi+30h]
mov eax, [ebx+28h] mov [edi+F8h], eax mov [ebx+20h], eax
mov [edi+4Ch], eax mov eax, [ebx+18h] mov eax, [edi+34h]
mov eax, [ebx+2Ch] mov [edi+FCh], eax mov [ebx+24h], eax
mov [edi+50h], eax mov eax, [ebx+1Ch] mov eax, [edi+38h]
mov eax, [ebx+30h] mov [edi+100h], eax mov [ebx+28h], eax
mov [edi+54h], eax mov eax, [ebx+20h] mov eax, [edi+3Ch]
mov eax, [ebx+34h] mov [edi+104h], eax mov [ebx+2Ch], eax
mov [edi+58h], eax mov eax, [ebx+24h] mov eax, [edi+40h]
mov eax, [ebx+38h] mov [edi+108h], eax mov [ebx+30h], eax
mov [edi+5Ch], eax mov eax, [ebx+28h] mov eax, [edi+44h]
mov eax, [ebx+3Ch] mov [edi+10Ch], eax mov [ebx+34h], eax

8-6

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

eax, [edi+48h]
[ebx+38h], eax
eax, [edi+4Ch]
[ebx+3Ch], eax
eax, [edi+50h]
[ebx+40h], eax
eax, [edi+54h]
[ebx+44h], eax
eax, [edi+58h]
[ebx+48h], eax
eax, [edi+5Ch]
[ebx+4Ch], eax
eax, [edi+60h]
[ebx+50h], eax
eax, [edi+64h]
[ebx+54h], eax
eax, [edi+68h]
[ebx+58h], eax
eax, [edi+6Ch]
[ebx+5Ch], eax
eax, [edi+70h]
[ebx+60h], eax
eax, [edi+74h]
[ebx+64h], eax
eax, [edi+78h]
[ebx+68h], eax
eax, [edi+7Ch]
[ebx+6Ch], eax
eax, [edi+80h]
[ebx+70h], eax
eax, [edi+84h]
[ebx+74h], eax
eax, [edi+88h]
[ebx+78h], eax
eax, [edi+8Ch]
[ebx+7Ch], eax
eax, [edi+90h]
[ebx+80h], eax
eax, [edi+94h]
[ebx+84h], eax
eax, [edi+98h]
[ebx+88h], eax
eax, [edi+COh]
[ebx+8Ch], eax
eax, [edi+C4dh]
[ebx+90h], eax
eax, [edi+C8h]
[ebx+94h], eax
eax, [edi+CCh]
[ebx+98h], eax
eax, [edi+DO0h]
[ebx+9Ch], eax
eax, [edi+D4h]
[ebx+A0h], eax
eax, [edi+D8h]
[ebx+A4h], eax
eax, [edi+DCh]
[ebx+A8h], eax
eax, [edi+EOh]
[ebx+ACh], eax
eax, [edi+12Ch]
[ebx+B0h], eax
eax, [edi+130h]
[ebx+B4h], eax
eax, [edi+134h]
[ebx+B8h], eax
eax, [edi+138h]
[ebx+BCh], eax
eax, [edi+13Ch]
[ebx+COh], eax
eax, [edi+140h]

mov
mov
mowv
mowv
mov
mov
mowv
mowv
mov
mov
mowv
mowv
mov
mov
mowv
mowv
mov
mov
mowv
mowv
mov
mov
mowv
mowv
mowv
mov
mov
mowv
mowv
fldcw
pop
pop
pop
mov
pop
ret

[ebx+C4h], eax
eax, [edi+144h]
[ebx+C8h], eax
eax, [edi+148h]
[ebx+CCh], eax
eax, [edi+14Ch]
[ebx+D0h], eax
eax, [edi+150h]
[ebx+D4h], eax
eax, [edi+154h]
[ebx+D8h], eax
eax, [edi+158h]
[ebx+DCh], eax
eax, [edi+15Ch]
[ebx+EOh], eax
eax, [edi+160h]
[ebx+E4h], eax
eax, [edi+164h]
[ebx+E8h], eax
eax, [edi+168h]
[ebx+ECh], eax
eax, [edi+16Ch]
[ebx+F0h], eax
eax, [edi+170h]
[ebx+F4h], eax
eax, [edi+174h]
[ebx+F8h], eax
eax, [edi+178h]
[ebx+FCh], eax
[ebp—-4h]

ebx

edi

esi

esp, ebp

ebp

8-7

Real-Time Shading Language v6

Kekoa Proudfoot Eric Chan
February 28, 2002

Contents
1 Language version history

2 Basics
2.1 BaseDataTypes. o o v i e e e e e e e e
2.2 Expressions, Operators, and Built-in Functions
2.2.1 Operators for manipulating scalars and vectors
2.2.2 Arithmetic operators e
2.2.3 Derivative Operatorso e e e e e e e e e e e e
224 Blending operatorso e e e e
2.2.5 CompariSon OPerators v v v v v v v e e e e e e e e e e e
2.2.6 Logical operators e e
2277 Conditional select operator
2.2.8 Miscellaneous scalar and vector operations
2.2.9 MatriX Operationso e e e e e e e
2.2.10 Texturing Operations v v v i i e e e e e e e e e e e
2.2.11 Accessing screen-space coordinates
2.2.12 Parentheses
2.2.13 Assignment and cast Operatorso e e e
2214 integrate () e e e e e
2.3 Operator Precedence e
24 Statements e
2.5 Functions e e e e

3 Surface shaders, light shaders, and the integrate () operator

4 Computation Frequencies

4.1 Frequency type modifiers e e
4.2 Computation frequency inferrencerules Lo
4.3 Explicitly specifying computation frequencies oL

(8]

O O 000X I I UN NN WWN

Type conversion
Global variables
Function Overloading

Conditional Compilation

Appendices

9.1 Built-in operators and functions oL
9.2 Grammar e e
9.3 Sampleshaders

12

13

14

15

1 Language version history

The version 1 language had lisp-like parenthetical constructs and shaders, expressions of fixed colors, tex-
tures, and lit materials. The only data type was a [0, 1] clamped color, and the allowed operators were add,
multiply, and blend (over).

The version 2 language replaced the lisp-like constructs of the version 1 language with ones more like C. The
underlying expressions, operators, and data types did not change.

The version 3 language was discussed but never implemented. The intent was to extend the version 2 language
to remove the restriction that colors, textures, and lit materials be fixed by making these data types config-
urable through parameters to shaders. This language version was also to introduce a separation between light
shaders and surface shaders.

The version 4 language allowed shaders to be configured using shader parameters and provided a light/surface
shader abstraction. It also introduced the concept of multiple computation frequencies, making use of types to
manage when and how computations are performed. New vertex and primitive-group processing capabilities
were exposed to complement a set of fragment processing capabilities similar to those available in previous
language versions.

The version 5 language allowed us to explore compilation to advanced fragment processing pipelines. The
new features included three-component vectors, three-by-three matrices, three-vector operations, more frag-
ment operations, operators to assist with compiling to fragment pipelines, and conditional compilation.

The version 6 language is described in this document. It is an extension of the version 5 language that provides
additional operators and functions to assist with compiling to advanced vertex and fragment hardware. In
particular, this revision adds the following new features:

e Boolean logical operators (Section 2.2.6)

e Derivative operators (Section 2.2.3)

General index operator[] with swizzle (Section 2.2.1)

Assignment writemasks (Section 2.2.13)

e An operator to access screen-space position and depth value per-fragment (Section 2.2.11)

2 Basics

The general format of our language, as well as our language’s declaration and expression syntax, is similar to
C. Our language does, however, have a number of notable differences. These include a different set of data
types, a number of specialized type modifiers, a slightly different set of operators, and different semantics
with regards to function calls and global variables. These differences will become clearer as you proceed
through this document.

As with C, our language relies on white space and indenting only to the extent that they separate tokens in
the language. White space and indenting are otherwise ignored.

Comments are allowed in our language. These may be denoted using either the C /* */ syntax or the

C++ // comment syntax. Identifiers, integers, and floats are all specified as they are in C. Identifiers are
case-sensitive.

8-9

2.1 Base Data Types

We begin the discussion of our language with a description of its data types.

In our language, data types are composed of a base data type preceeded by an optional list of type modifiers.
In this section, we describe the base data types. We leave the discussion of type modifiers for later sections.

Our language supports ten base data types. They are:

bool boolean value

clampfl | scalar [0, 1]-clamped floating-point value
clamp£3 | 3-component [0, 1]-clamped floating-point vector
clampf4 | 4-component [0, 1]-clamped floating-point vector
floatl scalar unclamped floating-point value

float3 3-component unclamped floating-point vector
float4 4-component unclamped floating-point vector
matrix3 | 3x3 floating point matrix

matrix4 | 4x4 floating point matrix

texref texture reference

Two of these types need further explanation.

e The bool type is either true or false. It has no numerical value.

o The ftexref type stores a reference to a texture. Its value corresponds to an OpenGL texture name as
specified to g1BindTexture.

Additionally, note that although the clamped float types are described as floating point, because their ranges
are limited to [0, 1], they may be implemented using either fixed- or floating-point.

In addition to the ten base types, we support some additional type names for compatibility with the previous
version of the language:

clampf same as clampfl
clampfv | same as clampf4

float same as floatl
floatv same as float4
matrix same as matrix4

2.2 Expressions, Operators, and Built-in Functions

The expression syntax of our language is much like that of C, except that we provide a different set of
operators and also a core set of built-in functions. In this section, we introduce and describe these operators
and functions.

Most operators that we provide have both float and clampf versions, where the clampf versions are

defined to clamp their results (but not their intermediate values) to [0, 1]. We make special note of operators
which either do not have clampf versions or do not operate on float or clampf values at all.

8-10

2.2.1 Operators for manipulating scalars and vectors

The join operator {} assembles scalars into vectors and vectors into matrices. It comes in five versions:

{ x, v, z} // make a 3-vector from scalars x, y, and z

{ %, v, 2z, w '} // make a 4-vector from scalars x, vy, z, and w

{ xyz, w } // make a 4-vector from 3-vector xyz and scalar w

{ r0, rl, r2 } // make a 3x3 matrix from 3-vector rows r0, rl, r2

{ r0, rl, r2, r3 } // make a 4x4 matrix from 4-vector rows r0, rl, r2, r3

The index operator [] has many uses. It can be used to extract a scalar from a 3- or 4- component vector,
or to swizzle the components of a vector. Indexing is zero-based:

float3 vec3
float4d vec4d

{ x, v, 2 };
{ %, v, 2, w };

vec3[0] // extract x

vec3[2] // extract z

vecd [3] // extract w

vec3[1,2,0] // returns { vy, z, x }
vec3[2,2,2] // returns { z, z, z }
vec3[2,0,1,1]1 // returns { z, %X, y, vy }
vec4[3,0,2] // returns { w, x, z }

The number of comma-delimited indices given inside the square braces specifies the size of the output. The
output must be a scalar, a 3-component vector, or a 4-component vector. The following is illegal because we
do not currently support 2-component vectors:

{ %, v, z, w }[1,2] // error: result is a 2-vector

Each element given in the index operator [] may be in the range 0... N — 1, where IV is the number of
components of the operand. For example:

{ x, v, z }I[3,0,2] // error: index 3 out of range
{ %, vy, z, w }[3,0,2] // ok: returns { w, x, z }

The index operator[] can also extract a row from a 3 x3 matrix or a 4 x4 matrix.
{ r0, rl, r2 }[0] // extract r0 from 3x3 matrix { rO, rl, r2 }
{ r0, rl, r2 }[2] // extract r2 from 3x3 matrix { r0, rl, r2 }

{ r0, rl, r2, r3 }[3] // extract r3 from 4x4 matrix { r0, rl, r2, r3 }

The rgb (), alpha (), and blue () operators help make compilation to fragment pipelines efficient. How-
ever, they remain primarily for compatibility with older versions of the language. Their various forms and
equivalent expressions are shown here:

rgb({ r, g, b, a }) // extract 3-vector { r, g, b } from 4-vector;
// equivalent to { r, g, b, a }[0,1,2]

alpha({ r, g, b, a }) // extract scalar a from 3-vector;
// equivalent to { r, g, b, a }I[3]

blue({ r, g, b, a }) // extract scalar b from 4-vector
// equivalent to { r, g, b, a }I[2]

blue({ r, g, b }) // extract scalar b from 3-vector;
// equivalent to { r, g, b }[2]

rgb (c) // construct 3-vector { ¢, ¢, ¢ } from scalar c
// equivalent to c¢[0,0,0]

8-11

2.2.2 Arithmetic operators

We provide scalar and vector versions of add, multiply, subtract, and divide. For multiply and divide, we also
provide versions that operate on one scalar and one vector in either order. Some examples:

{
{
{
{
* { bx, by, bz }
/ { bx, by, bz }
ax, ay, az } * b
ax, ay, az } / b

a+ b

a->b

a * b

a /b

{ ax, ay, az } + bx, by, bz }
{ ax, ay, az } - bx, by, bz }
{ ax, ay, az } * bx, by, bz }
{ ax, ay, az } / bx, by, bz }
a

a

{

{

Multiplication of two matrices and multiplication of one matrix (on the left) and one vector (on the right) are
also supported. Since we do not support clamped matrices, there are no clampf matrix-matrix or matrix-
vector multiply operations.

We provide an unclamped floating-point negate operator:
- a

We do not provide a clampf version of the negate operator, since its result would always be zero.

2.2.3 Derivative operators

We provide derivative operators that operate on unclamped scalars, 3-vectors, and 4-vectors. They compute
the partial derivatives of an expression with respect to x and y in screen-space coordinates.

dx (expr) // computes partial derivative of expr (w.r.t. x)
dy (expr) // computes partial derivative of expr (w.r.t. y)

2.2.4 Blending operators

We provide a generic blend operator that operates on clamped and unclamped 4-vectors only. The blend
operator is based on the OpenGL blend function and takes the following form:

blend (src_factor, dst_factor)

Note this the blend operator is a binary infix operator. The value to the left of the blend is called the source
(src) and the value to the right of the blend is called the destination (dst):

src blend(src_factor,dst_factor) dst
Such an expression computes:
src_factor * src + dst_factor * dst

Both src_factor and dst_factor are placeholders for names chosen from the following list. Each has
the value indicated:

8-12

Factor Name

Factor Value

ZERO

ONE

SRC_COLOR

SRC_ALPHA

DST_COLOR

DST_ALPHA
ONE_MINUS_SRC_COLOR
ONE_MINUS_SRC_ALPHA
ONE_MINUS_DST_COLOR
ONE_MINUS_DST_ALPHA

{0, 0, 0,
{1, 1, 1,
sSrc

{ srcl3],
dst

dst

~

~

I
N

B oR e e
~

e e
<

{
{
{
{
{

~
~

0}
1}
src[3], src[3], src[3] }
dst[3], dst[3], dst[3] }
1 } - src
1} - { src[3], src[3], src[3], src[3] }
1 } - dst
1} - { dst[3], dst[3], dst[3], dst[3] }

We provide two additional blend operators to

simplify the specification of common blend operations. The

over operator composites two values with premultiplied alpha, and is equivalent to blend (ONE,
ONE_MINUS_SRC_ALPHA). The blend_over operator composites two values where only second value has
premultiplied alpha. The first value has non-premultiplied alpha. It is equivalent to blend (SRC_ALPHA,

ONE_MINUS_SRC_ALPHA).

2.2.5 Comparison operators

We provide a standard set of comparison operators (==, !=, >, <, >=, <=) for computing boolean values. We
also provide a 1thalf () operator to assist with fragment compilation. The 1thalf () operator returns true

if its operand is less than %

2.2.6 Logical operators

We provide the four standard logical operators AND, OR, NOT, XOR that operate on boolean values. NOT has
the highest precedence, followed by AND, XOR, OR.

bool a = true;

bool b = false;

a &b // a AND b

a | b // a OR b

a " b // a XOR b

“a // NOT a

b & a // (NOT b) AND a

2.2.7 Conditional select operator

false
true
true
false
true

Boolean expressions are used with the conditional select operator. The select operator takes three pa-
rameters: a boolean, a value to return if the boolean is t rue, and a value to return if the boolean is false.

Some examples:

select (0 == 0, t, f)
select (0 > 1, t, f)
select (1thalf(0), t, f)
select (1thalf (0.5), t, f)

2.2.8

// value is t
// value is f
// value is t
// value if f

Miscellaneous scalar and vector operations

We provide a number of additional operations, including scalar and vector clamp, min, and max operations;
vector dot, length, and normalize operations; a 3-vector reflect and cross operations; sin, cos, pow,

and sgrt. Some examples:

8-13

clamp (0.5, 0, 1) // value is 0.5

clamp({ -1, 0, 1, 2}, 0, 1) // value is { 0, 0, 1, 1 }
clamp({ -1, 1, 3}, {0, O, 1}, {1, 2, 2}) // value is { 0, 1, 2 }
min({ -1, 1, 2, 3}, {1, 0, 1, 4 1}) // value is { -1, 0, 1, 4 }
dot({ O, 1, 2, 3}, { 4, 5, 6, 7 1}) // value is 38

length({ 3, 4, 0 }) // value is 5

length({ 1, 1, 1 }) // value is 1.7320...
length({ 1, 1, 1, 1 }) // value is 2

normalize({ 0, 0, 2 }) // value is { 0, 0, 1 }
reflect({ 1, 1, 1}, { 0, 0, 1 }) // value is { -1, -1, 1 }
reflect({ 1, 0, O}, { O, 1, 0O }) // value is { 0, 0, 1 }
sin(3.14159) // value is 0

cos (3.14159) // value is -1

pow (10, 2) // value is 100

sqrt (2) // value is 1.4142...

2.2.9 Matrix operations

We also provide a number of matrix operations:

affine extracts the upper-left 3 X3 matrix from a 4 x4 matrix
frustum generates a 4 x4 frustum projection matrix

identity | generates a 4x4 identity matrix

invert inverts a 3x3 or a 4 x4 matrix

lookat generates a 4x4 lookat matrix

ortho generates a 4 x4 orthographic projection matrix

rotate generates a 4 x4 rotation matrix of an angle about an axis
scale generates a 4 x4 scale matrix

translate | generates a 4 x4 translation matrix
transpose | transposes a 3x3 or 4 x4 matrix
identity3 | generates a 3x3 identity matrix
rotate3 generates a 3% 3 rotation matrix
scale3 generates a 3x3 scale matrix

The exact parameters needed for each matrix operation are discussed in the operator appendix, Section 9.1.

2.2.10 Texturing operations

A number of texturing and lookup operations are also available:

cubemap perform a cubemap lookup given a texref and a 3-vector
cubenorm | perform a 3-vector normalization given a 3-vector

lut perform a component-wise fragment clamp4 table lookup
texture perform a 2d texture lookup given a texref and a 3- or 4-vector

texture3d | perform a 3d texture lookup given a texref and a 3- or 4-vector
bumpdiff | perform a diffuse bumpmap operation
bumpspec perform a specular bumpmap operation (requires bumpdif f)

The exact parameters needed for each texture and lookup operation are discussed in the operator appendix,
Section 9.1.

The lut operator performs a component-wise table lookup of fragment value. It uses the OpenGL color
lookup table defined using glPixelMap. Our intent is to eventually abstract lookup table specification to
allow multiple lookup tables, but currently we only support one color lookup table at a time.

The bumpdiff and bumpspec operators implement bumpmapping as described for NVIDIA hardware by
Mark Kilgard. The bumpdiff operator computes the diffuse reflection coefficient given a tangent-space

8-14

normal map, texture coordinates, and a tangent-space light vector. The bumpspec operator computes the
specular reflection coefficient given the same normal map and texture coordinates plus the tangent-space
half-angle vector. The bumpdiff operator leaves a self-shadowing term in alpha which must be used to
modulate the bumpspec result. The blend operator, configured as blend (ONE, SRC_ALPHA), is used to
accomplish this.

2.2.11 Accessing screen-space coordinates

The xyz_screen () built-in function provides the coordinates and depth value of the current fragment in
screenspace:

float4 coords = xyz_screen(); // coords[0] = screen-space x position
// coords[l] = screen-space y position
// coords[2] = depth (z) value
// coords[3] = undefined

2.2.12 Parentheses

As with C, we support parentheses () for grouping expressions to override the default operator precedences.

2.2.13 Assignment and cast operators

Two special operators are the assignment and cast operators. Both are used as they typically are in C. As-
signment implies a cast to the type of the value being set. Type conversion is discussed in greater detail in
Section 5.

Assignments may be masked. The indices provided in the mask must be unique and appear in ascending
order. Some examples:

floatd v = { 2, 5, 7, 15 };

v[3] = 0; // v is now { 2, 5, 7, 0 };

v[0] = v[1]; // v is now { 5, 5, 7, 0 };

v[0,1,3] = {1, 1, 1 }; // v is now { 1, 1, 7, 1 };

v[0,0,1] = { 2, 2, 2 }; // error: 0 is repeated

v[0,1,3] = {1, 1, 1, 1 }; // error: LHS is 3-vector, RHS is 4-vector
v[2,1,3] = {1, 1, 1 }; // error: mask indices out of order

2.2.14 integrate()

Finally, we mention the integrate () operator, which we discuss in more detail in Section 3 on surface and
light shaders.

2.3 Operator Precedence

We define the following binary operator precedences, by group from lowest precedence to highest precedence:

> < >= <=

+ -
blend over blend_over
*/

All of the binary operators are left associative, except for =, which is right associative.

8-15

2.4 Statements

Our language supports three kinds of statements: variable declarations, expression statements, return state-
ments. Empty statements are permitted; these are ignored.

A variable declaration is similar to C, and consists of a type followed by an identifier followed by an optional
initializer followed by a semicolon.

floatl f1; // declare f1l

floatl f2 = 1; // declare and initialize f2
floatd4 vl = { 1, 2, 3, 4 }; // declare and initialize vl
floatd v2 = f1 * vil; // declare and initialize v2

As with C++, variables may be declared anywhere in a basic block.

Expression statements are simply an expression followed by a semicolon:

1; // valid but useless, eventually optimized away
N = normalize (N); // normalize N
NdotL = dot (N, L); // compute dot product of N and L

A return statement is used to indicate the final value of a shader or function:

return color;

2.5 Functions

Our language allows functions to be defined and called mostly like they are in C, with a few exceptions. First,
there is no such thing as a void function, and therefore all functions must return a value. Second, there is
(currently) no such thing as a function declaration for user-defined functions. All user-defined functions must
be defined before they may be used. Finally, recursion is forbidden.

All of these differences are due to the way function calls are implemented. All function calls are inlined.

Here is an example.

float4 lerp (float4 a, float4 b, float afrac)
{

return afrac * a + (1 - afrac) * b

float4 bilerp (float4 v00, float4 v01l, float4 v10 float4 vll,
float fracO, float fracl)

float4 v0 = lerp(v00, v01l, fracO);
float4 vl = lerp(v1l0, v1l, fracO);
return lerp(v0, vl, fracl);

3 Surface shaders, light shaders, and the integrate () operator

Our language borrows the RenderMan concept of separate surface and light shaders to provide orthogonality
between these shading operations. Light shaders compute how much light is incident on a surface, while
surface shaders compute the amount of light reflected toward the viewer, possibly querying lights to determine
and account for the amount of light arriving from each light source.

Surface and light shaders are written as functions are, except that their return types are preceded by the
shader modifier plus also either the surface or the 1ight modifier. In addition, shaders must return a
float4 or a clamp4 type:

8-16

float func () { return ...; } // an ordinary function
surface shader float4 surf () { return ...; } // a surface shader
light shader float4 light () { return ...; } // a light shader

The surface and 1ight modifiers may also be applied to functions. When this is done, such a function
may access special features (variables and such) available only to surface and light shaders. In addition,
the function becomes accessible only to other surface or light functions and shaders, as appropriate. More
examples:

surface float surffunc () { return ...; } // a surface function
surface float lightfunc () { return ...; } // a light function

To query light sources, surface shaders (and functions) use the integrate () operator. This operator takes
an expression and loops over all active light sources, evaluating the expression once per light source. The
operator returns the sum of the expression evaluations.

The integrate () operator evaluates special “per-light” expressions, which are expressions that depend
directly on special built-in per-light values (in particular the light vector, the half-angle vector, and the
light intensity) and/or other per-light expressions. In evaluating a per-light expression once per light, the
integrate () operator removes the per-light attribute of the integrated expression.

We use a type modifier scheme to track per-light expressions. Just as every value in our system has a type,
every value also has a type modifier that specifies whether or not the value changes with every light. In our
system, the keyword perlight is used to indicate such a value. We require all variables and return values
that hold per-light values to be declared with the perlight modifier. We impose this requirement to make user
code more readable. Our compiler separately infers which values are per1ight, and it uses this information
to report an error when a perlight value is stored to a non-perlight variable.

Here are some examples of perlight values and the integrate () operator. Assume L, H, and C1 are
per-light values:

float4 Kd = ...; // compute diffuse surface color
perlight float NdotL = max (dot (N,L),0); // max (dot (N,L),0) is perlight
perlight float intensity = Cl * NdotL; // Cl * NdotL is perlight

float color = Kd * integrate (intensity); // integrate light and modulate

perlight float NdotH = dot (N, H); // dot (N,H) is perlight
float NdotH = dot (N, H); // error: missing perlight modifier

As we will see in a later section on built-in global values, C1 in particular references the amount of light
incident on the surface from each light. By referencing c1, surface shaders indirectly reference the active
light shaders.

Values that have been integrated once cannot be integrated again. This is something of an artificial restriction
that was imposed, because it really doesn’t make a lot of sense to integrate a value that has already been
integrated.

4 Computation Frequencies

A key aspect of our system is its support for computations at a variety of different rates, or computation
frequencies. We support four different computation frequencies: once at compile time, once per group of
primitives, once per vertex, and once per fragment. In our system every shading computation occurs at one
of the rates.

Note that we do not provide a frequency that corresponds to once per primitive. Ideally we would support
such a frequency, in particular for flat shading, but do not because OpenGL only provides limited support
for that computation frequency. Specifically, OpenGL does not provide support for per-primitive texture
coordinates.

8-17

4.1 Frequency type modifiers

As with our treatment of per-light expressions, we use a type modifier system to control the frequencies at
which computations occur. This modifier specifies how often that value is computed (or specified, if the value
is a parameter).

There is one type modifier for each computation frequency. The modifiers are: constant, vertex, primitive
group, and fragment. We provide an additional modifier, perbegin, for compatibility with the previous
language version. This additional modifier is equivalent to the primitive group modifier.

Three base types, namely the two matrix types and the texref type, have a maximum computation frequency
of primitive group. This restriction effectively limits how often matrices and texrefs may be computed or
specified. This is somewhat of an arbitrary restriction for the matrix types, since there is no reason matrices
cannot be computed per-vertex or per-fragment; however, we impose this restriction to simplify our compiler
somewhat. The restriction on texrefs reflects the fact that in OpenGL, textures are specified for entire
primitive groups and never more often (such as per-vertex).

Our language defines a set of rules to allow compilers to infer how often a particular value is computed.
Such a set of rules is important both because it removes the need for the user to explicitly manage compu-
tation frequencies and because it allows for efficient generation of code when the user does not know the
computation frequencies of certain values, in particular the intensity of light arriving at a surface, which can
reasonably have any computation frequency. In the latter case, a compiler that can infer computation fre-
quencies can properly choose, for example, vertex operations or fragment operations to integrate vertex and
fragment lights, respectively.

4.2 Computation frequency inferrence rules

Two rules are used to infer computation frequencies. The first deals with the default computation frequencies
of shader parameters, while the second deals with the propagation of computation frequencies across opera-
tors. By applying these rules, a compiler can always infer the computation frequency of a given operation.

All shader parameters have a well-defined default computation frequency that indicates how often the param-
eter may be specified. This frequency depends on the parameter’s base type and the corresponding shader’s
type (surface or light):

Type Default for surfaces | Default for lights
bool vertex primitive group
clampfl | vertex primitive group
clampf3 | vertex primitive group
clampf4 | vertex primitive group
floatl vertex primitive group
float3 vertex primitive group
float4 vertex primitive group
matrix3 | primitive group primitive group
matrix4 | primitive group primitive group
texref | primitive group primitive group

Note that the defaults are different for surfaces and lights. This reflects the fact that typically light properties
do not change more often than per-primitive-group.

The default shader parameter computation frequencies take effect when no computation frequency is specified
with the parameter. An explicitly-specified computation frequency overrides the default.

Some examples:

8-18

surface shader float4 surfl (floatl f£) { ... } // £ is vertex
surface shader float4 surf2 (matrix3 m) { ... } // m is primitive group
light shader float lightl (floatl f) { ... } // £ is primitive group
light shader float light2 (vertex floatl f) { ... } // f is vertex
light shader float light3 (matrix3 m) { ... } // m is primitive group

Note that the rules for default computation frequencies do not apply to functions. They only apply to shaders:
surface surffuncl (floatl £f) { ... } // no default computation frequency

In this case, the computation frequency of £ is determined by the value passed to £ when surffuncl is
called.

The computation frequencies of computed values are determined by applying a second rule that propagates
computation frequencies across operators. For the most part, we try to compute things as infrequently as
possible. Specifically, the computation frequency of a computed value is the least frequent computation
frequency possible given the constraint that a value must be computed at least as often as the most frequent
value it depends on. For example, the result of adding a vertex value to another vertex value is a vertex value,
but adding a vertex value to a fragment value results in a fragment value, both because of the rule previously
mentioned, and because really it doesn’t make any sense to try to obtain vertex values from fragment ones.

A number of operations can only be evaluated at certain computation frequencies. For example, texturing can
only be computed per-fragment, while matrix-matrix multiplication can be computed at most per-primitive-
group. We place additional constraints on computation frequencies to satisfy the limitations of each operation.
We describe the details of these per-operator constraints in the operator appendix, Section 9.1.

4.3 Explicitly specifying computation frequencies

While the computation frequencies of computed values are inferred using the rules just described, they may
be controlled by explicitly specifying computation frequencies. For example, if two vertex values N and L
are to be used to compute dot (N, L), the result of the dot product will normally be per-vertex. However, a
per-fragment dot product can be achieved by first casting N or L (or both) to a fragment value:

float3 Nf = (fragment float3) N; // cast N, fragment Nf inferred
float3 Lf = (fragment float3) L; // cast L, fragment Lf inferred
// compute and use dot (Nf,Lf)...

fragment float3 Nf = N; // use implicit cast from assign
fragment float3 Lf = L; // use implicit cast from assign
// compute and use dot (Nf,Lf)...

dot (N, (fragment float3)L)... // cast L only

In all three cases, once a fragment version of N or L is computed, the resulting dot product is inferred to be
evaluated per-fragment.

S Type conversion

A number of type conversions are permitted, including conversion of clamped values to float values, con-
version of float values to clamped values, conversion from one computation frequency to a more-frequency
computation frequency, and conversion of non-per-light values to per-light values.

Converting clamped values to float values has no effect except perhaps one of number representation (specif-
ically, floating point or fixed point). Also, since floating-point values are more general than clamped floating-
point values, this conversion is considered a promotion. Before performing an operation that involves both
clamped and unclamped values, clamped values are automatically promoted to unclamped values.

8-19

Converting a float value to a clamped value clamps the float value to [0,1]. The number representation
possibly changes also. This conversion may be performed explicitly using a type cast, or implicitly when
assigning a float value to a clampf variable.

Conversion from one computation frequency to another is only possible if the new computation frequency
is more frequent than the old one. In most cases, such a conversion simply replicates the old value at the
new computation frequency; however, the conversion from vertex to fragment is special. In this case, vertex
values are interpolated between vertices to obtain a fragment value. The exact nature of the interpolation is
currently being left unspecified. Our compiler follows what OpenGL specifies, i.e. texture coordinates are
perspective-correct while color values are not necessarily that way.

The conversion of the computation frequencies of operands to an operator is performed automatically as nec-
essary for each operator. This process follows the rules for operator overloading and the function prototypes

for operators discussed in later sections.

A non-per-light value may be converted into a per-light value. Performing this conversion has the effect of
replicating the non-per-light value for every light.

Unlike in C, there is no way to interpret the value of a comparison numerically.

6 Global variables

Our system supports user-defined global variables as long as they are constant and their values are specified.
Globals must be explicitly declared as constant:

constant float4 Red = { 1, 0, 0, 1 }; // valid

constant float4 Red; // error: missing definition
float4d Red = { 1, 0, 0, 1 }; // error: missing constant keyword
constant float4 DarkRed = 0.5 * Red; // functions of constants are valid

A number of global values are predefined and initialized on demand before a shader executes, or, in the case
of predefined perlight globals, before each evaluation of the expression integrated by the corresponding
integrate () operator. The predefined light shader global variables are:

vertex float3 S; // light-space surface vector, normalized
vertex float Sdist; // distance to surface point

The predefined surface shader globals are:

vertex float3 N; // eye—-space normal vector, normalized
vertex float3 T; // eye-space tangent vector, normalized
vertex float3 B; // eye-space binormal vector, normalized
vertex float3 E; // eye-space eye vector, normalized

vertex float4d P; // eye-space surface position, w=1
vertex float4d Pobij; // object-space surface position, w=1
perbegin float4 Ca; // color of global ambient light
vertex floatd Cprev; // previous framebuffer color

vertex perlight float3 L; // eye-space light vector, normalized
vertex perlight float3 H; // eye-space halfangle vector, normalized

vertex perlight float4 Cl; // color of light (from a light shader)

8-20

Note that the definitions of the various globals currently cause light shaders to be evaluated in light space and
surface shaders to be evaluated in eye space. Light space is defined by the light’s position and orientation,
while eye space is defined by the viewer’s position and orientation.

The use of built-in parameters implicitly makes a shader dependent on one or more implicit shader param-
eters which are used to evaluate the built-in parameters. It is important to recognize these implicit shader
parameters even though they are not a formal part of the language, since ultimately the user must set these
parameters in addition to all those explicitly required by the active surface and light shaders. The implicit
parameters are:

perbegin float4 __ _ambient; // color of global ambient light
perbegin matrix4 __ _modelview; // modelview matrix

perbegin matrix4 _ projection; // projection matrix

vertex float3 __ _normal; // object-space normal vector
vertex float3 __tangent; // object-space tangent vector
vertex float3 __binormal; // object-space binormal vector
vertex float4 __ position; // object-space surface position

perbegin perlight float4 __lightpos; // homogeneous position of light
perbegin perlight float3 _ lightdir; // unnormalized eye-space light direction
perbegin perlight float3 __lightup; // unnormalized eye-space light up vector

Perlight built-in parameters must be specified once per active light shader.

Note that all shaders depend on __modelview, _projection,and ___position.

7 Function Overloading

Our language allows functions to be overloaded in a manner similar to C++. Overloading allows for many
functions to be available when a function is called. Availability is defined as a function with the same name
and number of parameters. We define a set of rules to select which function to select when more than one
choice is available. The rules examine the base types of the parameters used in the call to form groups of
matching functions.

The first group consists of functions whose parameter base types match the base types of the parameters in
the call exactly.

The second group consists of functions whose parameter base types match the base types of the parameters
in the call through the possible use of promotion. In particular, we consider the promotion of clamped floats
to floats to form matches.

The third group consists of functions whose parameter base types match the base types of the parameters in
the call through the use of both promotion and demotion.

The first group is checked first. If empty, the second group is checked, and likewise for the third group. If all
three groups are empty, there is no match, and an error is generated. If any group being checked has more
than one choice available, the call is ambiguous, and an error is generated. A match is found only if exactly
one match is available in the first non-empty group.

This overloading mechanism is used for user-defined functions as well as built-in functions and built-in

operators. Built-in functions and operators are defined using function prototypes in the operator appendix,
Section 9.1.

8-21

8 Conditional Compilation

Today’s hardware platforms offer differing sets of functionality. Some operators are not available on all
hardware. To solve this problem, our language supports conditional compilation using a very-limited subset
of C-preprocessor directives. We support:

#if <integer>

#ifdef <identifier>
#ifndef <identifier>
#else

fendif

#define <identifier>
#undef <identifier>

To promote the creation of function libraries, we also provide a limited include directive:
#include "<filename>"

‘We only support relative filenames, which must be double-quoted. We do not support angle-bracked filenames
for searching include directories.

Our compiler predefines a number of identifiers based on whether or not certain hardware features are avail-
able. These identifiers are:

e HAVE_FRAGMENT_SUBTRACT. Indicates whether or not the subtract operator is available per-fragment.
e HAVE_TEXTURE_3D. Indicates whether or not the texture3d operator is available.

e HAVE_CUBEMAP. Indicates whether or not the cubemap operator is avialble.

e HAVE_BUMPOPS. Indicates whether or not the bumpdi £ £ and bumpspec operators are available.

e HAVE_REGISTER_COMBINERS. Covers the availability of the following operators per-fragment: dot,
select, rgb, blue, alpha, 1thalf, cubenorm.

e HAVE_FRAGMENT_INDEX. Indicates whether or not the [] operator is available per-fragment.

e HAVE_FRAGMENT_COMPARES. Indicates whether or not the ==, !=, >, <, >=, and <= operators are
available per-fragment.

e HAVE_FRAGMENT_PROGRAM. Covers availability of the following operators per-fragment: dot, select,
rgb, blue, alpha, 1thalf, arithmetic operators (add, subtract, multiply, divide), join, swizzle,
normalize, cross, length, max, min, pow, reflect, sqrt, sin, cos, ceil, floor, trunc, mod,
dx, dy, xyz_screen, and assignment mask.

9 Appendices

9.1 Built-in operators and functions

In this appendix, we describe the enumerate the built-in operators and functions made available by our lan-
guage. Except for the syntax by which they are referred to, built-in operators and functions behave identically.

Every built-in operator and function has a range of computation frequencies at which it may be evaluated; the
range specifies both a minimum and a maximum frequency.

As described earlier, values are evaluated as infrequently as possible. We define this computation frequency

precisely as the maximum frequency among all of an operator’s operands and the operator’s miminum com-
putation frequency.

8-22

Minimum and maximum computation frequencies limit the kinds of operations available at each computation
frequency. For example, they restrict many matrix manipulation operations to a maximum computation
frequency of per-primitive-group, and they force texture mapping to be per-fragment.

An error is generated if an operator’s evaluation computation frequency exceeds the operator’s maximum
computation frequency.

In addition to each operator having a range of computation frequencies, every operand of every operator also
has an associated range of computation frequencies. In most cases, this range has a minimum frequency of
constant and a maximum frequency equal to the maximum frequency of the operator itself, but in a few cases,
the range is more restrictive. For example, current hardware does not support the use of per-fragment texture
coordinates. We therefore limit the maximum computation frequency of texture coordinates to vertex values.

In cases where the minimum frequency of an operand is not met, the value passed to the operand is automati-
cally cast to an appropriate computation frequency. In cases where the maximum frequency of an operand is
exceeded, an error is generated.

Not all operations are supported by all hardware at all computation frequencies. The compiler is allowed
to generate an error when an unsupported operation is used. The section regarding conditional compilation
enumerates the most important sets of operators that fall into this category.

We now list all of the available operators. In the listings below, ranges are specified using a [min:Jmax
syntax. For operators, if the min is unspecified, it defaults to constant. For operands, if the min and max
are unspecified, the range defaults to the range of the corresponding operator, otherwise if only the min is
unspecified, the min defaults to the max.

fragment floatl operator+ (floatl, floatl)
fragment float3 operator+ (float3, float3)
fragment float4 operator+ (floatd4, floatd)
fragment clampfl operator+ (clampfl, clampfl)
fragment clampf3 operator+ (clampf3, clampf3)
fragment clampf4 operator+ (clampfd4, clampfd)

fragment floatl operator- (floatl, floatl)
fragment float3 operator- (float3, float3)
fragment float4 operator- (float4d4, float4)
fragment clampfl operator- (clampfl, clampfl)
fragment clampf3 operator— (clampf3, clampf3)
fragment clampf4 operator— (clampfd4, clampf4)
fragment floatl operator* (floatl, floatl
fragment float3 operator* (float3, float3
fragment float3 operator* (floatl, float3
fragment float3 operator* (float3, floatl
fragment float4 operator* (float4d4, float4d
fragment float4 operator* (floatl, float4
fragment float4 operator* (float4d4, floatl)
fragment clampfl operator* (clampfl, clampfl)
fragment clampf3 operator* (clampf3, clampf3)
fragment clampf3 operator* (clampfl, clampf3)
fragment clampf3 operator* (clampf3, clampfl)
fragment clampf4 operator* (clampf4, clampfd)

(

(

(

)
)
)
)
)
)

fragment clampf4 operator* (clampfl, clampf4)
fragment clampf4 operator* (clampfd4, clampfl)
perbegin matrix3 operator* (matrix3, matrix3)
perbegin matrix4 operator* (matrix4, matrix4)
vertex float3 operator* (matrix3, float3)

8-23

vertex float4 operator* (matrix4, float4)

fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment

fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment

fragment
fragment
fragment

fragment
fragment
fragment
fragment
perbegin
perbegin

fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment

fragment
fragment

floatl
float3
float3
float3
float4
float4
float4
clampfl
clampf3
clampf3
clampf3
clampf4
clampf4
clampf4

floatl
float3
float3
float3
float4
float4
float4
clampfl
clampf3
clampf3
clampf3
clampf4
clampf4
clampf4

floatl
float3
float4

floatl
floatl
clampfl
clampfl
float3
float4

float3
float3
float3
clampf3
clampf3
clampf3
float4
float4
float4
clampf4
clampf4
clampf4

float3
float4

operator/ (floatl, floatl
operator/ (float3, float3
operator/ (floatl, float3
operator/ (float3, floatl
operator/ (float4, float4d
operator/ (floatl, float4

)
)
)
)
)
)

operator/ (float4, floatl)

operator/ (clampfl,
operator/ (clampf3,
operator/ (clampfl,
operator/ (clampf3,
operator/ (clampfi4,
operator/ (clampfl,
operator/ (clampfi4,
operator/ (floatl, floatl

operator/ (float3, float3
operator/ (floatl, float3
operator/ (float3, floatl
operator/ (float4, float4
operator/ (floatl, float4d

clampfl)
clampf3)
clampf3)
clampfl)
clampf4)
clampf4)
clampfl)

)
)
)
)
)
)

operator/ (float4, floatl)

operator/ (clampfl,
operator/ (clampf3,
operator/ (clampfl,
operator/ (clampf3,
operator/ (clampf4,
operator/ (clampfl,
operator/ (clampfd,

operator- (floatl)
operator—- (float3)
operator—- (float4)

clampfl)
clampf3)
clampf3)
clampfl)
clampf4)
clampf4)
clampfl)

operator[] (float3)
operator[] (float4)
operator[] (clampf3)
operator[] (clampf4)
operator[] (matrix3)
operator[] (matrix4)
operator[] (floatl)
operator[] (float3)
operator[] (float4)
operator[] (clampfl)
operator[] (clampf3)
operator[] (clampf4)
operator[] (floatl)
operator[] (float3)
operator[] (float4)
operator[] (clampfl)
operator[] (clampf3)
operator[] (clampf4)
operator writemask (float3)

operator writemask (float4)

8-24

vertex float3 operator{} (float, float, float)

vertex float4d operator{} (float, float, float, float)
vertex clampf3 operator{} (clampf, clampf, clampf)

vertex clampfd4 operator{} (clampf, clampf, clampf, clampf)

fragment float3 operator{} (float, float, float)

fragment float4 operator{} (float, float, float, float)
fragment clampf3 operator{} (clampf, clampf, clampf)
fragment clampf4d operator{} (clampf, clampf, clampf, clampf)

fragment float4 operator{} (float3 rgb, floatl alpha)
fragment clampf4 operator{} (clampf3 rgb, clampfl alpha)
perbegin matrix3 operator{} (float3, float3, float3)
perbegin matrix4 operator{} (float4, floatd4, floatd, float4)

fragment bool operator== (float, float)
fragment bool operator!= (float, float)
fragment bool operator> (float, float)
fragment bool operator< (float, float)
fragment bool operator>= (float, float)

fragment bool operator<= (float, float)
fragment bool operator== (clampf, clampf)
fragment bool operator!= (clampf, clampf)

fragment bool operator> (clampf, clampf)
fragment bool operator< (clampf, clampf)
fragment bool operator>= (clampf, clampf)
fragment bool operator<= (clampf, clampf)

fragment bool operator and (bool, bool)
fragment bool operator or (bool, bool)
fragment bool operator xor (bool, bool)
fragment bool operator not (bool, bool)

fragment float4 operator blend (float4, float4)
fragment clampf4 operator blend (clampfd4, clampf4d)
fragment float4 operator over (float4, float4)

fragment clampf4 operator over (clampfd, clampf4d)
fragment float4 operator blend_over (float4, float4)
fragment clampf4 operator blend_over (clampf4, clampf4)

surface fragment floatl operator integrate (floatl)
surface fragment float3 operator integrate (float3)
surface fragment float4 operator integrate (float4)
surface fragment clampfl operator integrate (clampfl)
surface fragment clampf3 operator integrate (clampf3)
surface fragment clampf4 operator integrate (clampf4)

fragment bool operator () (bool)
fragment float operator () (float)
fragment float3 operator () (float3)
fragment float4 operator () (float4)
fragment clampf operator () (clampf)
fragment clampf3 operator () (clampf3)
fragment clampf4 operator () (clampf4)
perbegin matrix3 operator () (matrix4)
perbegin matrix4 operator () (matrix4)
perbegin texref operator () (texref)

8-25

constant
constant

perbegin
perbegin
perbegin
perbegin
perbegin
perbegin
perbegin
perbegin

perbegin
perbegin
perbegin
perbegin
perbegin

fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment
fragment

fragment
fragment
fragment
fragment
fragment
fragment

fragment

fragment
fragment
fragment
fragment

matrix3
matrix4

matrix3
matrix3
matrix3
matrix3
matrix3
matrix4
matrix4
matrix4

matrix4
matrix4
matrix4
matrix4
matrix4

float ¢
float3
float3
float4
float4
float3
float
float
float 1
float 1
float
float3
float4

float min

float3
float4
float3
float4
float p

float s
float c¢
float s
float c
float £
float

float t

float dx

float3
float4
float d
float3
float4

float4

floatl

float3
float4

clampfl select

dot
dot

max

mod

identity3
identity

affine
invert
rotate3
scale3
transpose
frustum
invert
lookat

ortho

rotate

scale

translate
transpose

lamp

clamp
clamp
clamp
clamp
cross

ength

ength

max
max
min
min

normalize
normalize
(float wval,
float3 reflect

ow

grt
os
in
eil
loor

runc

dx
dx
%

dy
dy

Xyz_screen

select
select
select

(float wval,

(float3,
(float4,

(float,
(float3,
(float4,

(float,
(float3,
(float4,

0
0

(matrix4)
(matrix3)
(float angle,
(float x, float vy,
(matrix3)

(float 1, float r,
(matrix4)
(float exk,
float cz,
(float 1, float r,
(float angle,
(float x, float vy,
(float x, float vy,
(matrix4)

float

float ey,
float uxk,

float 1lo,
(float3 val, float 1lo,
(float3 wval, float3 lo,
(float4 val, float 1lo,
(float4 val, floatd 1o,
(float3, float3l)
float3)

float4)

(float3)

(float4)

float)

float3)

float4)

float)

float3)

float4)

(float3)

(float4)

float exp)
(float3 vec,

(float)
(float)
(float)
(float)

(float)
(float,
(float)

float)

(float)
(float3)
(floatd)

(float)
(float3)
(floatd)

O

(bool,

(bool,

(bool,
(bool,

floatl,
float3, float3l)
float4, floatid)
clampfl,

floatl)

8-26

float b,

float b,
float x,
float z)

x, float vy,

float z)

float ez,
float uy,

float vy,

float z)

float hi)

float hi)
float3 hi)
float hi)
float4 hi)

float3 norm)

clampfl)

float t,

float c¢x,
float uz)
float t,

float z)

float n,
float z)

float n,

float f)

float cy,

float f)

fragment clampf3 select (bool, clampf3, clampf3)
fragment clampf4 select (bool, clampf4, clampf4)
fragment float3 rgb (floatl)

fragment float3 rgb (float4)

fragment clampf3 rgb (clampfl)

fragment clampf3 rgb (clampf4)

fragment floatl blue (float3)

fragment floatl blue (float4)

fragment clampfl blue (clampf3)

fragment clampfl blue (clampf4)

fragment floatl alpha (float4)

fragment clampfl alpha (clampf4)

fragment bool 1lthalf (floatl)

fragment bool 1lthalf (clampfl)

fragment:fragment clampf4 lut (fragment clampf4)
fragment:fragment clampf4 texture (texref tex, constant:vertex float3 coord)
fragment: fragment clampf4 texture (texref tex, constant:vertex float4 coord)
fragment:fragment clampf4 texture3d (texref tex, constant:vertex float3 coord)
fragment:fragment clampf4 texture3d (texref tex, constant:vertex float4 coord)
fragment:fragment clampf4 cubemap (texref ref, constant:vertex float3 coord)
fragment:fragment clampf4 cubemap (texref ref, constant:vertex float4 coord)
fragment:fragment clampf3 cubenorm (constant:vertex float3 vec)
fragment:fragment clampf4 bumpdiff (texref ref, constant:vertex float4 coord,
constant:vertex float3 Ltan)
fragment:fragment clampf4 bumpspec (texref ref, constant:vertex float4 coord,
constant:vertex float3 Htan)

9.2 Grammar
The following grammar describes the overall organization of the language.
PROGRAM : DECL_LIST
DECL_LIST : DECL_LIST DECL
DECL : TYPE IDENT ;
| TYPE IDENT = EXPR ;
| TYPE IDENT (PARAM LIST) { STMT_LIST }
TYPE : MOD_LIST BASE_TYPE

MOD_LIST : MOD_LIST MOD

MOD : constant | primitive group | vertex | fragment | light | surface |
shader | perlight | perbegin

BASE_TYPE : bool | clampf | clampfl | clampf3 | clampf4 | clampfv |
float | floatl | float3 | floatd4 | floatv | matrix3 | matrix4 |

matrix | texref

PARAM_LIST : PARAM
| PARAM_LIST ’,’ PARAM

PARAM : TYPE IDENT
STMT_LIST : STMT_LIST STMT

STMT : TYPE IDENT ;

8-27

TYPE IDENT = EXPR ;
EXPR ;
return EXPR ;

’

EXPR : UNARY = EXPR
| EXPR BINOP EXPR

| UNARY
BINOP : == | != 1] > | < | > | <= | + | - | blend | over | blend over | * | /
UNARY : - UNARY
| (TYPE) UNARY
| PRIMARY
PRIMARY : (EXPR)
{ EXPR_LIST }
IDENT

\
\
| PRIMARY [INTEGER]

| PRIMARY [INTEGER, INTEGER, INTEGER]

| PRIMARY [INTEGER, INTEGER, INTEGER, INTEGER]
| integrate (EXPR)

| IDENT (EXPR_LIST)

| INTEGER

| FLOAT

EXPR_LIST : EXPR
| EXPR_LIST , EXPR

The following non-terminals are described by regular expressions:

IDENT : [_a-zA-Z][_a-zA-7Z20-9]%*
INTEGER : [0-9]+
FLOAT : (([0-91+(\.[0-91%)2) [(\.[0-9]1+4)) ([eE][-+]12[0-9]+)2f"

9.3 Sample shaders

The following example shaders serve to illustrate how the shading language might be used to implement a
number of interesting shading effects.

// Useful constants
constant float4 Zero = { O
constant float4 Black = {
constant float4 White = {
constant float pi = 3.14159;

// Light shaders

light float
atten (float ac, float al, float aq)

{
return 1.0 / ((ag * Sdist + al) * Sdist + ac);

light shader float4
simple_light (float4 color, float ac, float al, float aq)
{

8-28

return color * atten(ac, al, aq);

float

smoothstep (float value, float min, float max)

{

float t = clamp((value - min) / (max - min), 0, 1);

return t * t * (3 - 2 * t);

float

smoothspot (float spot_cos, float inner_edge_angle,

{

float inner_cos = cos (inner_edge_angle * pi / 180);
float outer_cos = cos (outer_edge_angle * pi / 180);
return smoothstep (spot_cos, outer_cos,

light shader float4

inner_cos);

spotlight (float4 color, float ac, float al, float aq)

{
float4 Cl = smoothspot(-S[2], 15,
return C1;

light float4

star_projector_f (float4 color, float ac,

float time)

float4 Cl = smoothspot (-S[2], 15,
float4 uv = { S[0], S[1l], 0, -S[2]
matrix4 t_rot = rotate(time * 15,

30)

30)

* color * atten(ac, al, aq);

* color * atten(ac, al, aq);

}; // project

0, 0O,

1);

return Cl * texture(stars, t_rot * scale(l.5, 1.5, 1) * uv);

light shader float4

star_projector (float4 color, float ac,

{

return star_projector_f (color, ac,

light shader float4

al,

float al, float ag, texref stars)

aq, stars, 0);

float outer_edge_angle)

float al, float aqg, texref stars,

star_projector_anim (float4 color, float ac, float al, float ag, texref stars,

float time)

return star_projector_f (color, ac,

// Reflection models

surface float4

lightmodel (float4 a, floatd4 d, floatéd s,

{
perlight float diffuse = dot(N,L);

al,

aq, stars, time);

floatd4 e, float sh)

perlight float specular = pow(max (dot (N,H),0),sh);
perlight float4 fr = select(diffuse > 0, d * diffuse + s * specular,

return a * Ca + integrate(fr * Cl)

+ e;

8-29

Zero) ;

surface float4

lightmodel_diffuse (float4 a, float4d d)

{
perlight float diffuse = dot(N,L);
perlight float4 fr = select(diffuse > 0, d * diffuse, Zero);
return a * Ca + integrate(fr * Cl);

surface float4
lightmodel_specular (float4 s, float4 e, float sh)
{
perlight float diffuse = dot(N,L);
perlight float specular = pow(max (dot (N,H),0),sh);
perlight float4 fr = select(diffuse > 0, s * specular, Zero);
return integrate(fr * Cl) + e;

surface float4

lightmodel_anisotropic_u (float4 a, floatd4 d, floatd4 s, float4 e, float sh)

{
float EdotT = dot (E,T);
perlight float LdotT = dot(L,T);
perlight float diff = sqgrt(l - LdotT * LdotT);
perlight float spec = max(diff * sgrt(l - EdotT*EdotT) - LdotT*EdotT, O0);
perlight float4 fr = max(dot(N,L),0) * (d * diff + s * pow(spec,sh));
return a * Ca + integrate(fr * Cl) + e;

surface float4

lightmodel_anisotropic_v (float4 a, floatd4 d, floatd4 s, float4 e, float sh)

{
float EdotB = dot (E,B);
perlight float LdotB = dot (L,B);
perlight float diff = sqrt(l - LdotB*LdotB);
perlight float spec = max(diff * sgrt(l - EdotB*EdotB) - LdotB*EdotB, O0);
perlight float4 fr = max(dot(N,L),0) * (d * diff + s * pow(spec,sh));
return a * Ca + integrate(fr * Cl) + e;

float center (float value) { return 0.5 * value + 0.5; }

surface float4
lightmodel_textured_anisotropic_u (texref anisotex, float4 a, float4d e)
{
perlight float4 uv = { center(dot(T,E)), center(dot(T,L)), 0, 1 };
// moving Cl helps group vertex/fragment computations
//perlight float4 fr = max(dot (N,L),0) * texture(anisotex, uv);
//return a * Ca + integrate(Cl * fr) + e;
perlight float4 clfr = Cl * max(dot(N,L),0) * texture(anisotex, uv);
return a * Ca + integrate(clfr) + e;

surface float4
lightmodel_textured_anisotropic_v (texref anisotex, float4d a, float4d e)
{
perlight float4 uv = { center(dot(B,E)), center(dot(B,L)), 0, 1 };
// moving Cl helps group vertex/fragment computations
//perlight float4 fr = max(dot(N,L),0) * texture(anisotex, uv);
//return a * Ca + integrate(Cl * fr) + e;

8-30

perlight float4 clfr = Cl * max(dot (N,L),0) * texture(anisotex,
return a * Ca + integrate(clfr) + e;

surface float4
lightmodel_cartoon (texref cartoon, float4 a, float4d d)

{

perlight float fr = max(dot (N,L),O0);

// clamp upper end to avoid texture border color

float4 uv = { min(integrate(fr) + 0.2, 0.75), 0, 0, 1 };
return a * Ca + d * texture(cartoon, uv);

// Standard material properties

constant float4 Ma = { 0.35, 0.35, 0.35, 1.00 };
constant float4 Md = { 0.50, 0.50, 0.50, 1.00 };
constant float4 Ms = { 1.00, 1.00, 1.00, 1.00 };
constant float4 Me = { 0.00, 0.00, 0.00, 0.00 };
constant float Msh = 300;

surface shader float4
default ()

{

return lightmodel (Ma, Md, Ms, Me, Msh);

surface shader float4
cartoontest (texref cartoon)

{

return lightmodel_cartoon(cartoon, {.4, .4, .8, 1}, {.4, .4, .8,

surface shader float4
bowling_pin (texref pinbase, texref bruns, texref circle, texref coated,

texref marks, float4d uv)

float4 uv_wrap = { uv([0], 10 * Pobj[l1l], 0, 1 };
float4 uv_label = { 10 * Pobj[0], 10 * Pobj[l], O, 1 };
matrix4 t_base = invert (translate(0, -7.5, 0) * scale(0.667, 15,

matrix4 t_bruns = invert (translate(-2.6, -2.8, 0) * scale(5.2, 5.2,

matrix4 t_circle = invert (translate(-0.8, -1.15, 0) * scale(1l.4,
matrix4 t_coated = invert (translate (2.6, -2.8, 0) * scale(-5.2,
matrix4 t_marks = invert (translate(2.0, 7.5, 0) * scale (4, -15,
float front = select (Pobj[2] >= 0, 1, 0);

float back = select (Pobj[2] <= 0, 1, 0);

float4 Base = texture (pinbase, t_base * uv_wrap);

float4 Bruns = front * texture (bruns, t_bruns * uv_label);
float4 Circle = front * texture(circle, t_circle * uv_label);
float4 Coated = back * texture(coated, t_coated * uv_label);
float4 Marks = texture (marks, t_marks * uv_wrap);

float4 Cd = lightmodel_diffuse({ 0.4, 0.4, 0.4, 1}, { 0.5, 0.5,

uv) ;

5.

11);

1));
1.4,

2,
1))

0.5,

float4 Cs = lightmodel_specular({ 0.35, 0.35, 0.35, 1 }, Zero, 20);

return (Circle over (Bruns over (Coated over Base))) * (Marks * Cd)

surface shader float4
glossy_moons (texref gloss, float4 uv)

{

8-31

1

1

)i
1)
))

1

)i

’

)i

+ Cs;

float4 base_a = { 0.1, 0.1, 0.1, 1.00 };
float4 base_d = { 0.70, 0.40, 0.10, 1.00 };
float4 base_s = { 0.07, 0.04, 0.01, 1.00 };
float4 base_e = { 0.00, 0.00, 0.00, 1.00 };
float base_sh = 15;

float4 gloss_a = { 0.07, 0.04, 0.01, 1.00 };
float4 gloss_d = { 0.07, 0.04, 0.01, 1.00 };
float4 gloss_s = { 1.00, 0.90, 0.60, 1.00 };
float4 gloss_e = { 0.00, 0.00, 0.00, 1.00 };
float gloss_sh = 25;

float4 Cbase = lightmodel (base_a, base_d, base_s, base_e, base_sh);

float4 Cgloss = lightmodel (gloss_a, gloss_d, gloss_s, gloss_e, gloss_sh);

float4 uv_gloss = invert (scale(.335,.335,1)) * uv;
return Cbase + Cgloss * texture(gloss, uv_gloss);

surface shader float4
anisotropic_ball_vertex (texref star)

{

float4 Ma = { 0.1, 0.1, 0.1, 1.0 };
float4d Md = { 0.3, 0.3, 0.3, 1.0 };
float4d Ms = { 0.7, 0.7, 0.7, 1.0 };
float4d Me = { 0.0, 0.0, 0.0, 0.0 };
float Msh = 15;

float4 base = texture(star, { center(Pobj[2]), center(Pobj[0]), 0, 1
return base * lightmodel_anisotropic_v(Ma, Md, Ms, Me, Msh);

surface shader float4

anisotropic_ball_texture (texref star, texref anisotex)

{
float4 Ma =
float4 Me =
float4 base
return base

0.1, 0.1, 0.1, 1.0 };

0.0, 0.0, 0.0, 0.0 };

texture (star, { center(Pobj[2]), center(Pobj[0]), 0, 1
lightmodel_textured_anisotropic_v (anisotex, Ma, Me);

|~ —~

*

surface float4
spheremap (texref env)
{
float3 R = normalize (reflect (E,N) + {
[

0, 0, 1 });
float4 uv = { center(R[0]), center(R[1])

+ 0, 1}

return texture (env, uv);

surface shader float4
sphere_map_env (texref env)
{

return spheremap (env) ;

surface shader float4
poolball (texref one, float4d uv)

{
float4 Ma = { 0.35, 0.35, 0.35, 1.00 };

8-32

)i

float4d Md = { 0.50, 0.50, 0.50, 1.00 };
float4 Ms = { 1.00, 1.00, 1.00, 1.00 };
float4 Me = { 0.00, 0.00, 0.00, 1.00 };
float Msh = 127;
float4 Cd = lightmodel_diffuse (Ma, Md);
float4 Cs = lightmodel_specular (Ms, Me, Msh);
matrix4 tm = invert (translate(0.35, 0.2, 0.0) * scale(0.3, 0.6, 1.0));
return Cd * texture(one, tm * uv) + Cs;
}
surface shader float4
poolball_with_env (texref one, texref env, floatd uv)
{
float4d Ma = { 0.35, 0.35, 0.35, 1.00 };
float4d Md = { 0.50, 0.50, 0.50, 1.00 };
float4d Ms = { 1.00, 1.00, 1.00, 1.00 };
float4d Me = { 0.00, 0.00, 0.00, 1.00 };
float Msh = 127;
float4 Cd = lightmodel_diffuse (Ma, Md);
float4 Cs = lightmodel_specular (Ms, Me, Msh);
matrix4 tm = invert (translate(0.35, 0.2, 0.0) * scale(0.3, 0.6, 1.0));
return Cd * texture(one, tm * uv) + (Cs + spheremap (env));
}
float4
turb (texref noise, float4d uv)
{
float4 uv_0 = invert (rotate(30.2, 0, 0, 1) * scale(4, 4, 1)) * uv;
float4 uv_1 = invert (rotate(-35.5, 0, 0, 1) * scale(2, 2, 1)) * uv;
float4 uv_2 = invert (rotate(274.1, 0, 0, 1) * scale(l, 1, 1)) * uv;
float4d N_O0 = 0.57 * texture (noise, uv_0);
float4d N_1 = 0.29 * texture(noise, uv_1);
float4d N_2 = 0.14 * texture(noise, uv_2);
return N_O0O + N_1 + N_2;
}
surface shader float4
noise_2d_multipass (texref noise, float4d uv)
{
return turb(noise, uv);
}
surface shader float4
noise_2d_multipass_specular_modulate (texref noise, float4d uv)
{
float4 Cl1 = lightmodel (Ma, Md, Ms, Me, Msh);
return Cl * turb(noise, uv);
}
surface shader float4
noise_2d_multipass_specular_separate (texref noise, float4d uv)

{
float4 Cd
float4 Cs
return Cd

= lightmodel_diffuse (Ma,
lightmodel_specular (Ms,
turb (noise, uv) + Cs;

*

float4

skymap (texref clouds, float4 dir,

Md) ;

Me,

8-33

Msh) ;

float time)

dir = normalize (dir);

dir { dir[0], dir[1l], 4 * (dir[2] + 0.707), O };

dir = normalize(dir);

float4 uv_lo = dir * { 2, 2, 0, 0 } + { time / 15 , time / 15, 0, 1 }
float4 uv_hi = dir * { 3, 3, 0, 0 } + { time / 15 , time / 15, 0, 1 }
floatd Lo texture(clouds, uv_1lo);

float4 Hi = texture(clouds, rotate(125, 0, 0, 1) * uv_hi);

// for now, do not use Lo over (Hi over { 0.6, 0.5, 1.0, 1.0 })

// texture_env_combine does not do over correctly

return Lo over Hi over { 0.6, 0.5, 1.0, 1.0 };

surface shader float4
quake_sky (texref clouds, float time)

{
return skymap (clouds, { Pobj[0], -Pobj[2], Pobj[l], 0 }, time);

surface shader float4

bowling_pin_with_sky (texref pinbase, texref bruns, texref circle,
texref coated, texref marks, floatd uv,
texref clouds, float time)

float4 uv_wrap = { uv[0], 10 * Pobj[l], O, 1 };
float4 uv_label = { 10 * Pobj[0], 10 * Pobj[l], O, 1 };

matrix4 t_base = invert (translate(0, -7.5, 0) * scale(0.667, 15, 1));
matrix4 t_bruns = invert (translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1
matrix4 t_circle = invert (translate(-0.8, -1.15, 0) * scale(1.4, 1.4,
matrix4 t_coated = invert (translate(2.6, -2.8, 0) * scale(-5.2, 5.2,

matrix4 t_marks = invert (translate(2.0, 7.5, 0) * scale (4, -15, 1));

float front = select (Pobj[2] >= 0, 1, 0);

float back = select (Pobj[2] <= 0, 1, 0);

float4 Base = texture (pinbase, t_base * uv_wrap);
float4 Bruns = front * texture(bruns, t_bruns * uv_label);

float4 Circle = front * texture(circle, t_circle * uv_label);

float4 Coated = back * texture(coated, t_coated * uv_label);

float4 Marks = texture (marks, t_marks * uv_wrap);

float Lscale = 0.5;

float4 Cd = lightmodel_diffuse({ 0.4, 0.4, 0.4, 1}, { 0.5, 0.5, 0.5,
Cd = Cd * Lscale;

float4 Cs = lightmodel_specular({ 0.35, 0.35, 0.35, 1 }, Zero, 20);
Cs = Cs * Lscale;

float3 R = reflect (E,N);

return (Circle over (Bruns over (Coated over Base

))
0.5 * skymap(clouds, { R[0], -R[2], R[1], O

)
}, time);

#ifdef HAVE_BUMPOPS

surface shader float4

’

’

)

1

)
1
)

— — ~

)i

’

* (Marks * Cd) + Cs +

bowling_pin_bump (texref pinbase, texref bruns, texref circle, texref coated,

texref marks, texref marksbump, float4d uv)

float4 uv_wrap = { uv[0], 10 * Pobj[l], 0, 1 };
float4 uv_label = { 10 * Pobj[0], 10 * Pobj[l], O, 1 };
matrix4 t_base = invert (translate (0, -7.5, 0) * scale(0.667, 15, 1));

matrix4 t_bruns = invert (translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));
1));

matrix4 t_circle = invert (translate(-0.8, -1.15, 0) * scale(l.4, 1.4,

8-34

matrix4 t_coated = invert (translate(2.6, -2.8, 0) * scale(-5.2, 5.2, 1));

matrix4 t_marks = invert (translate(2.0, 7.5, 0) * scale (4, -15, 1));

float front = select (Pobj[2] >= 0, 1, 0);

float back = select (Pobj[2] <= 0, 1, 0);

float4 Base = texture (pinbase, t_base * uv_wrap);

float4 Bruns = front * texture(bruns, t_bruns * uv_label);

float4 Circle = front * texture(circle, t_circle * uv_label);

float4 Coated = back * texture(coated, t_coated * uv_label);

float4 uv_marks = t_marks * uv_wrap;

float4 Marks = texture (marks, uv_marks);

perlight float3 Lt = { dot(T,L), dot(B,L), dot(N,L) };

perlight float3 Ht = { dot(T,H), dot (B,H), dot(N,H) };

float4d Ma = {.4,.4,.4,1};

float4d Md = {.5,.5,.5,1};

float4 Ms = {.3,.3,.3,1};

float4 Kd (Circle over (Bruns over (Coated over Base))) * Marks;

return Kd * Ma +

integrate(Cl * (Kd * Md * bumpdiff (marksbump, uv_marks, Lt)

blend (ONE, SRC_ALPHA)
Ms * bumpspec (marksbump, uv_marks, Ht)));

#endif /* HAVE_BUMPOPS */
#ifdef HAVE_CUBEMAP

surface shader float4
cube_from_obj_normal (texref cube) {
return cubemap (cube, {-1,-1,1}*_ _normal);

surface shader float4
poolball_with_cube (texref one, floatd4 uv, texref cube)

{

float4 Ma = .5 * { 0.35, 0.35, 0.35, 1.00 };
float4 Md = .5 * { 0.50, 0.50, 0.50, 1.00 };
float4 Ms = .5 * { 1.00, 1.00, 1.00, 1.00 };
float4 Me = .5 * { 0.00, 0.00, 0.00, 1.00 };

float Msh = 127;

float4 Cd = lightmodel_diffuse (Ma, Md);

float4 Cs = lightmodel_specular (Ms, Me, Msh);

matrix4 tm = invert (translate(0.35, 0.2, 0.0) * scale(0.3, 0.6, 1.0));
float3 R = reflect (E,N);

return Cd * texture(one, tm * uv) + Cs + 0.4 * cubemap(cube, {-1,-1,1}*R);

#endif /* HAVE_CUBEMAP */

8-35

Shading System Immediate-Mode API v2.2

William R. Mark and C. Philipp Schloter
April 4, 2002

1 Introduction

This document describes modifications to the OpenGL API to support the immediate-mode use of the Stanford
real-time shading language. We collectively refer to these extensions as the shading-language immediate-mode
API. These extensions are implemented as a layer on top of regular OpenGL.

The immediate-mode API supports the following major operations:
1. Loading the source code for a light shader or surface shader from a file.
2. Associating one or more light shader(s) with a surface shader to create a combined surface/light shader.
3. Compiling a combined surface/light shader for the current graphics hardware.
4. Selecting a compiled surface/light shader to use as the current shader for rendering.
5. Setting values of shader parameters.

When a shader is active, many OpenGL commands are no longer allowed, because their functionality is

provided through the shading language. The disallowed commands fall into four major categories:
1. Fragment-processing commands (e.g. fog, texturing modes)
2. Texture-coordinate generation and transformation commands
3. Lighting commands.
4. Material-property commands.

When using our “Iburg” multi-pass fragment backend, commands that configure framebuffer blending
modes are also forbidden (instead, use the Cprev builtin variable within a shader). However, these commands
are allowed with our “nv” fragment backend.

Using a forbidden OpenGL command while a programmable-shader is active will result in undefined

behavior.

8-36

2 Initialization

sglInit ()

The application must initialize the programmable shading system by calling sglInit () once, before

calling any other sg1* routines.

3 Loading shader source code

int sglShaderFile (GLuint shaderSourceID, char *shaderName, char *filename)

Loads the source code for the shader named shaderName from file £ilename, and assigns it the
identifier shaderCodeID. Any other shaders that are specified in the file are ignored. The loaded shader
source code becomes the active shader source code. The specified shader may be either a light shader or a
surface shader. shaderCodeID must be unused when this routine is called. The return code is 0 if there were

no errors, 1 if there was an error.

4 Compiling and activating shaders

After the source code for a shader is loaded, but before it is used, the shader must be compiled. Our system

treats shader source code and compiled shaders as largely separate entities.

sglCompileShader (GLuint shaderID)

Compiles the current shader source code. The compiled shader is assigned the user-specified identifier
shaderID. If the shader is a surface shader, it incorporates any currently associated light shaders (discussed
in the next section).

The newly created shader becomes the ’active’ shader, as if sglBindShader() had been called. If the
shader is a light shader, it is only active in the sense that subsequent sglParameterHandle () calls will
apply to it. A light shader can only be activated for rendering purposes by associating it with a surface shader
using sglUseLight ().

The current shader source code remains unchanged by this call.

Note that shader ID may not be -1, because this value is reserved for SGL _STD OPENGL, the standard

OpenGL lighting/shading model.

sglBindShader (GLuint shaderID)

Changes the currently active shader to that specified by shaderID. Note that it is illegal to render
geometry when a light shader is bound.

Specifying SGL_STD_OPENGL reverts to the standard OpenGL lighting/shading model.

8-37

S Associating lights with a surface

For efficiency reasons, the shading system must know which light shaders will be used with a surface shader

before the surface shader is compiled.

sglUseLight (GLuint lightShaderID)

This command binds a ‘“compiled” light shader to the current surface-shader source code.
lightShaderID indicates the light that is to be associated with the surface.

More than one light can be associated with a surface, by calling sglUseLight () multiple times.

However, the same (compiled) light shader may not be used more than once with a single surface. If two
identical lights are required, compile the light shader twice. Our system imposes this requirement because the
lightShaderID is used to specify how light parameters are modified. “Identical” lights will usually have different

parameter values (e.g. position).

5.1 Setting parameter values

For performance reasons, shader parameters are identified at rendering-time with numeric identifiers rather than
names. For each compiled shader, the programmer can choose the bindings from names to numeric identifiers,
within some constraints. We refer to the numeric parameter identifiers as parameter handles. Each compiled
surface or light shader has its own parameter-handle space.

There is an important advantage to allowing the programmer to choose values of parameter handles. It
facilitates the use of a single geometry rendering routine (e.g. renderSphere) with different surface shaders, as
long as the programmer chooses a consistent mapping of parameter handles to actual parameters for all of the

relevant shaders.

sglParameterHandle (char *paramName, GLuint paramHandle)

Assigns the parameter handle paramHandle to the current shader’s parameter paramName. The value
of paramHandle must be between 0 and SGL MAX PARAMHANDLE. The value of SGL MAX PARAMHANDLE is

guaranteed to be no less than 15.

sglParameter* (GLuint paramHandle, TYPE v, ...)

sglParameter*v (GLuint paramHandle, TYPE *v)

Assigns a value to the shader parameter(s) specified by paramHandle. For a per-vertex parameter, this
routine may be called at any time. For a per-primitive parameter, this routine may only be called outside of a
begin/end pair.

Because our shading language does not explicitly identify shader parameters as “colors” or “texture
coordinates”, the shading system can not automatically assign default values in the manner that OpenGL does.

For example, in OpenGL a g1Color3f command automatically sets the fourth value (alpha) to the default

8-38

value of 1.0. When using our system, the user must always specify all four components of the color value.
Likewise, the user must always specify all four components of a texture value. For a 2D texture, the third and
fourth values should usually be set to 0.0 and 1.0 respectively.

The sglParameter* routine is available in sglParameterl*, sglParameter4*, and
sglParameterl6* variants. The sglParameterl6* variants are used to specify matrix parameters, using
OpenGL’s array format.

If the shading language specifies a parameter’s type as either clampf or clampfv, type conversions
are performed in the same manner as they are for the OpenGL g1lColor * routines (see OpenGL Red Book, 3rd
edition, Table 4-1).!. In summary, integer-to-float conversions are performed such that the maximum integer
value (e.g. 255 for an unsigned byte) maps to 1.0. This behavior allows colors and normals to be stored in
unsigned bytes in a natural manner.

Our shading language uses textures, but the contents of the textures are not defined using the
language. Textures are defined by the application program, then passed to the shading-language routine as
a ’texref’ parameter. Our system relies on OpenGL’s texture object facility (g1BindTexture ()). The
sglParameterli or sglParameterliv routines are used to specify "texref’ parameters. The value of

the integer parameter is the textureName created using glBindTexture ().

sglLightParameter* (GLuint lightShaderID, GLuint paramHandle, TYPE v, ...)

sglLightParameter*v (GLuint lightShaderID, GLuint paramHandle, TYPE *v)

Assigns a value to the light parameter specified by paramHandle. The “compiled” light shader is
specified by 1ightShaderID. For a per-vertex parameter, this routine may be called at any time. For a

per-primitive parameter, this routine may only be called outside of a begin/end pair.

5.2 Light Pose
The pose of a light (position, direction, and orientation) is set using a routine defined for that purpose.

sglLightPosefv (GLuint lightShaderID, GLuint pname, GLfloat *v)

pname can be SGL.POSITION, SGL.DIRECTION, or SGL_.UPAXIS. The light direction defines the
—Z axis in light space, and the up axis defines the Y axis in light space.

The vector v should always be a four-element vector, and is considered to be in modelview space (i.e.
transformed by the modelview matrix or its inverse transpose, as appropriate). For SGL POSITION, the fourth
element of the vector should usually be set to 1.0. For SGL. DIRECTION and SGL UPAXTIS, the fourth element

should usually be set to 0.0.

!For implementation simplicity, our system deviates from the behavior in Table 4-1 in a minor way. Our system treats negative and

positive values symmetrically. For example, a signed-byte value of -127 maps to -1.0, whereas in OpenGL the value of -128 maps to -1.0

8-39

5.3 Ambient Light

sglAmbient* (...)

Specify the global ambient color. This color is accessible in surface shaders using the pre-defined Ca
variable. If a surface shader does not use the Ca variable, the ambient color will be ignored. This routine can

not be called inside a Begin/End pair.

6 Replacements for Standard OpenGL routines

6.1 Begin/End and Flush/Finish

Use sglBegin (), sglEnd (), sglFlush (), and sglFinish () instead of the corresponding standard
OpenGL routines. Using the standard OpenGL routines while a programmable shader is active will result in

undefined behavior.

6.2 Vertices, Normals, Tangents, Binormals

sglVertex* (TYPE v, ...)

sglVertex*v (TYPE v, ...)
sglNormal3* (TYPE v, ...)
sglNormal3*v (TYPE v, ...)
sglTangent3* (TYPE v, ...)
sglTangent3*v (TYPE v, ...)
sglBinormal3* (TYPE v, ...)

sglBinormal3*v (TYPE v, ...)

Vertices and local coordinate-frame vectors are passed using our versions of the classical OpenGL
routines. The results of calling one of the standard OpenGL routines while a programmable shader is active

are undefined.

8-40

6.3 Vertex arrays

To attain higher frame rates when using large models, the shading system provides sglParameterPointer,
sglEnableClientState,sglGetClientState,sglDisableClientStateand sglDrawArrays.
These routines differ from the OpenGL routines in that they support not only arrays of vertices, normals,
binormals or tangents, but also of any other shader parameter. To setup vertex arrays, you have to follow a

basic three step procedure, consisting of calls to:
1. sglParameterPointer
2. sglEnableClientState

3. sglDrawArrays.

First, the pointers to the parameter arrays have to be specified by sglParameterPointer (int
handle, GLsizei size, GLenum type, GLsizei stride, float *pointer). Valid han-
dles are SGL_VERTEX, SGL_NOMRAL, SGL_BINORMAL, SGL_TANGENT or any parameter handle
obtained from sglParameterHandle. The parameters size, type, stride and pointer follow
standard OpenGL vertex-array conventions. Please note that in the current version of the immediate-mode

APL
e GL_FLOAT is the only supported type.

e Stride should always be set to 4 for SGL _VERTEX, and to 3 for SGL NORMAL, SGL BINORMAL or

SGL_TANGENT arrays.

After specifying all parameter arrays, they must be activated for rendering by calling
sglEnableClientState (int handle). Similar, an activated parameter array can be disabled again

by calling sglDisableClientState (int handle).

To render the actual vertex array using all activated parameter arrays, call
sglDrawArrays (GLenum mode, GLint first, GLsizei count) which again follows standard
OpenGL conventions. Please note that rendering will only occur if an SGL VERTEX array was both specified
and activated. All other parameter arrays are optional. SGL NOMRAL, SGL BINORMAL and SGL TANGENT

are set to constant default values if not provided.

8-41

7 Advanced features

7.1 Manual backend configuration

To offer manual control over which backends the shading system should use, the immediate-mode in-
terface provides sglSetBackEndType (char* perprimitivegroup, char* vertex, char*
fragment). This routine presents a wraper for the internal, low-level functions set bcodegen,
set_vcodegen and set _fcodegen.

Currently, there are two primitive-group backends (“cc” and “x86”), three vertex backends (“cc”, “x86”,
and “nv20”), and two fragment backends (“1b” and “nv”). “Ib” is a standard-OpenGL backend; “nv” is a register-

combiner backend.

7.2 Shader parameter list retrieval

The following two routines allow a program to retrieve the lists of parameters required by a surface shader. To
retrieve the number of parameters for the current surface shader:
sglGetParameterCount (int *count) where count returns the total number of parameters for the

shader.

To retrieve the name and number of values for a specific parameter:
sglGetParameterInfo (int p, char **name, int *vcnt) where p defines the parameter of the
current shader, ranging from 0 to (1-count), name returns the name of the parameter and vent returns the number

of values for this parameter. E.g. for a float4 parameter, vent would return 4.

To retrieve the lists of parameters required by a light shader, use the following routines:
sglGetLightParameterCount (int lightid, int *count)
sglGetLightParameterInfo (int lightid, int p, char **name, int *vcnt)

Both routines take a 1 ightid as parameter that specifies the light for which information should be retrieved.

8 Depth testing

Ideally, depth testing works exactly as it does in standard OpenGL. However, in some implementations, incorrect
shading may occur if two (potentially visible) fragments at a pixel have exactly the same depth. This problem

only occurs if an implementation uses the framebuffer for inter-pass temporary storage in a multi-pass shader.

8-42

9 Error Handling

The shading system has a flexible method for handling errors. Errors are divided into two classes, minor and

major. For each class of error, the application can choose one of four behaviors:

e SG_MSG_NONE — No message is printed, and program execution continues. Errors can only be detected

by polling for them using sglGetError.

e SGL_MSG_WARN_ONCE — A message is printed for the first error that occurs, and program execution

continues. No message is printed for subsequent errors.
e SGL_MSG_WARN — A message is printed for every error that occurs, and program execution continues.

e SGL_MSG_ABORT — When an error occurs, a messsage is printed and program execution is halted.

sglDebuglLevel (int minor, int major)
Specify the behavior for minor and major errors. The defaultis sglDebugLevel (SGL MSG WARN ONCE,

SGLMSG_-ABORT).
GLenum sglGetError (void)
Poll for an error. If no error has occurred, GL. NO ERROR is returned. If an error has occurred, the error
code is returned.
const GLubyte* sglErrorString(GLenum errorCode)

Returns a descriptive string corresponding to an error code.

10 System Tips

In our current implementation, every sglBegin/sglEnd pair is expensive. If possible, group all primitives
into one such pair.

Because of restrictions in current graphics hardware, if a translucent shader is implemented using more
than one hardware pass, overlapping transparent primitives will not render correctly. You must call sglFlush

between each group of potentially overlapping primitives to avoid this problem.

8-43

Simple Program that uses Immediate-Mode Interface

#include <stdlib.h>
#include <stdio.h>
#include <string.h> I
#include <GL/glut.h> * draw cube with clockwise verts when looking at cube from outside
i
void drawcube(void) {
GLfloat red[] ={1.0, 0.0, 0.0, 1.0};

#include "imode.h"

¥ GLfloat green[] ={0.0, 1.0, 0.0, 1.0};
*Macro to check OpenGL error status, and print message if so GlLfloat blue[] ={0.0, 0.0, 1.0, 1.0};
Vi float UVa[] = {0.0, 0.0, 0.0, 1.0};
#define check_gl_error do {GLenum glerr;\ float UVb[] = {0.0, 1.0, 0.0, 1.0};

while ((glerr = glGetError()) 1= GL_NO_ERROR) \ float UVc[] = {1.0, 1.0, 0.0, 1.0};
fprintf(stderr, "OpenGL error '%s' at %s:%i\n", gluErrorString(glerr), \ float UVd[] = {1.0, 0.0, 0.0, 1.0};
__FILE__, __LINE_);} while(0)

sglBegin(GL_QUADS);
sglParameter4fv(PH_SURFCOLOR, red);
[* x=1"face */

sgiNormal3f(1.0, 0.0, 0.0);

[* The following parameter handles can be chosen mostly arbitrarily
(must be smallish, unique numbers) */
#define PH_COLOR 1

#define PH_AC 2 sglParameterdfv(PH_UV, UVa); sglVertex3f(1.0, -1.0, -1.0);
#define PH_AL 3 sglParameterdfv(PH_UV, UVb); sglVertex3f(1.0, -1.0, 1.0);
#define PH_AQ 4 sglParameterdfv(PH_UV, UVc); sglVertex3f(1.0, 1.0, 1.0);
#define PH_TEX 7 sglParameterdfv(PH_UV, UVd); sglVertex3f(1.0, 1.0, -1.0);
#define PH_UV 8 [x=-1face */
#define PH_SURFCOLOR 9 sgINormal3f(-1.0, 0.0, 0.0);
sglParameterdfv(PH_UV, UVa); sglVertex3f(-1.0, -1.0, -1.0);
/* gIBindTexture ID */ sglParameterdfv(PH_UV, UVb); sglVertex3f(-1.0, 1.0, -1.0);
#define TEXID 1 sglParameterdfv(PH_UV, UVc); sglVertex3f(-1.0, 1.0, 1.0);
sglParameterdfv(PH_UV, UVd); sglVertex3f(-1.0,-1.0, 1.0);
GlLfloat light_diffuse[] = {1.0, 0.0, 0.0, 1.0}; /*y=1 face */
sglParameter4fv(PH_SURFCOLOR, green);
I sgiNormal3f(0.0, 1.0, 0.0);
* Checkboard texture sglParameterdfv(PH_UV, UVa); sglVertex3f(-1.0, 1.0, -1.0);
¥ sglParameterdfv(PH_UV, UVb); sglVertex3f(1.0, 1.0, -1.0);
#define checkWidth 64 sglParameterdfv(PH_UV, UVc); sglVertex3f(1.0, 1.0, 1.0);
#define checkHeight 64 sglParameterdfv(PH_UV, UVd); sglVertex3f(-1.0, 1.0, 1.0);
static GLubyte checklmage[checkWidth][checkHeight][4]; [*y=-1face */
sgINormal3f(0.0,-1.0, 0.0);
void makeCheckimage(void) { sglParameterdfv(PH_UV, UVa); sglVertex3f(-1.0,-1.0, -1.0);
int i,j,c; sglParameterdfv(PH_UV, UVb); sglVertex3f(-1.0,-1.0, 1.0);
for (i=0; i<checkHeight; i++) { sglParameter4fv(PH_UV, UVc); sglVertex3f(1.0,-1.0, 1.0);
for (j=0; j<checkWidth; j++) { sglParameter4fv(PH_UV, UVd); sglVertex3f(1.0,-1.0, -1.0);
¢ = (((i&0x8)==0)"((j&0x8)==0))*255; [*z=1face */
checkimagel[i][j][0] = (GLubyte) c; sglParameter4fv(PH_SURFCOLOR, blug);
checkimagel[i][il[1] = (GLubyte) c; sgiNormal3f(0.0, 0.0, 1.0);
checklmageli][j][2] = (GLubyte) c; sglParameterdfv(PH_UV, UVa); sglVertex3f(-1.0,-1.0, 1.0);
checklmageli][j][3] = (GLubyte) 255; sglParameterdfv(PH_UV, UVb); sglVertex3f(-1.0, 1.0, 1.0);
sglParameterdfv(PH_UV, UVc); sglVertex3f(1.0, 1.0, 1.0);
} sglParameterdfv(PH_UV, UVd); sglVertex3f(1.0,-1.0, 1.0);
} [* z=-1face */
sgINormal3f(0.0, 0.0, -1.0);
I sglParameterdfv(PH_UV, UVa); sglVertex3f(-1.0,-1.0, -1.0);
* Sets up checkboard as texture #TEXID sglParameterdfv(PH_UV, UVb); sglVertex3f(1.0,-1.0, -1.0);
Vi sglParameterdfv(PH_UV, UVc); sglVertex3f(1.0, 1 -1.0);
void setupTexture() { sglParameterdfv(PH_UV, UVd); sglVertex3f(-1.0, 1.0, -1.0);

makeChecklmage();

sglEnd();

glPixelStorei(GL_UNPACK_ALIGNMENT, 1); }
gIBindTexture(GL_TEXTURE_2D, TEXID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkWidth, checkHeight,

0, GL_RGBA, GL_UNSIGNED_BYTE, checkimage); continued on next page

8-44

static void init_shader_params(void) {
static float light_ambient[4] = {0.2,0.2,0.2,1.0 };
static int frame = 0;

/*
* Changes to modelview matrix
Wi
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0.0, 0.0, 5, /*Eye*
0.0, 0.0, 0.0, /* Center */
0.0, 1.0,0.0); /*Up*/
glTranslatef(0.0, 0.0, -1.0);
glRotatef((float)frame++, 0.0, 1.0, 0.0);
glRotatef(35.264, 1.0, 0.0, 0.0);
glRotatef(45, 0.0, 0.0, 1.0);

sglAmbient4fv(light_ambient);
}

/* GLUT keyboard callback -- Quit when 'Q" key is pressed */
void keyboard(unsigned char key, int x, int y) {
switch (key) {
case 'q': case 'Q": /* quit */
exit(0);
break;
}
}

/* GLUT reshape callback -- reset viewport when window size changes */

void reshape(GLint w, GLint h) {
sglViewport(0, 0, w, h);
}

* GLUT idle callback -- continuously redraw so that we get animation */

void dynamicldle(void) {
glutPostRedisplay();

/* GLUT display callback -- draw the scene */
void display(void) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

sgIBindShader(200);
init_shader_params();
drawcube();
glutSwapBuffers();
check_gl_error;

}

void gfxinit(void) {
float light_color{4] ={1.0,1.0,1.0,1.0};
float atten_constant = 1.0;
float atten_linear = 0.01;
float atten_quadratic = 0.0;
GlLfloat light_position[] = {3.0, 3.0, 3.0, 1.0};

glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
gluPerspective(/* FOV in deg */ 40.0, /* Aspect ratio */ 1.0,
[* Znear */ 1.0, /* Zfar */ 10.0);

glMatrixMode(GL_MODELVIEW);
gluLookAt(0.0, 0.0, 5, /*Eye*

0.0, 0.0, 0.0, /* Center */

0.0, 1.0,0.0); /*Up*/
glTranslatef(0.0, 0.0, -1.0);

/*
* Shading system setup
i

#if 0

/* Specify specific codegens; without this defaults are used */

set_bcodegen("x86");

set_vcodegen('nv20");

set_fcodegen("nv");
#endif

sglinit();

/*

* Load and compile light shader

i

sglShaderFile(99, "simple_light", "../simpshade.in");
sglCompileShader(299);

sglParameterHandle("color", PH_COLOR);
sglParameterHandle("ac", PH_AC);
sglParameterHandle("al", PH_AL);
sglParameterHandle('aq", PH_AQ);

/*

* Specify light position & configuration

i

sglLightPosefv(299, SGL_POSITION,
sglLightParameter4fv(299, PH_COLOR,
sglLightParameter1f(299, PH_AC,
sglLightParameter1f(299, PH_AL,
sglLightParameter1f(299, PH_AQ,

/k

* Load and compile surface shader

¥/

sglShaderFile(1, "simple_surface", "../simpshade.in");
sglUseLight(299);

sglCompileShader(200);
sglParameterHandle("surfcolor", ~ PH_SURFCOLOR);

sglParameterHandle("tex", PH_TEX);
sglParameterHandle("uv", PH_UV);
}
int main(int argc, char **argv) {
/ir
* GLUT setup
i

glutinit(&argc, argv);

light_position);
light_color);
atten_constant);
atten_linear);
atten_quadratic);

glutlnitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glutCreateWindow("simple");
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutldieFunc(dynamicldle);
glutkeyboardFunc(keyboard);

/*

* Initialize graphics

i

gfxinit();

setupTexture();
sglParameterti(PH_TEX, TEXID);

/*

* Start event loop
¥/
glutMainLoop();
return 0;

8-45

Chapter 9

Sampling Procedural Shaders
Wolfgang Heidrich

Real-time Shading:
Sampling Procedural Shaders

Wolfgang Heidrich
The University of British Columbia

Abstract

In interactive or real-time applications, naturally the
complexity of tasks that can be performed on the fly
is limited. For that reason it is likely that even with the
current rate of development in graphics hardware, the
more complex shaders will not be feasible in this kind
of application for some time to come.

One solution to this problem seems to be a precom-
putation approach, where the procedural shader is eval-
uated (sampled), and the resulting values are stored in
texture maps, which can then be applied in interactive
rendering. A closer look, however, reveals several tech-
nical difficulties with this approach. These will be dis-
cussed in this section, and hints towards possible solu-
tions will be given.

1 Introduction and Problem State-
ment

In order to come up with an approach for sampling pro-
cedural shaders, we first have to determine which as-
pects of the shading system we would like to alter in
the interactive application.

For example, we can evaluate the shader for a num-
ber of surface locations with fixed illumination (all light
source positions and parameters are fixed), and a fixed
camera position. This is the mode in which a normal
procedural shading system would evaluate the shader
for a surface in any given frame. If the shader is ap-
plied to a parametric surface F'(u,v), then we can eval-
uate the shader at a number of discrete points (u,v),
and store the resulting color values in a texture map.

In an interactive application, however, this particular
example is of limited use since both the viewer and the
illumination is fixed. As a result the texture can only
be used for exactly one frame, unless the material is
completely diffuse. In a more interesting scenario, only

the illumination is fixed, but the camera is free to move
around in the scene. In this case, the shader needs to
be evaluated for many different reference viewing posi-
tions, and during realtime rendering the texture for any
given viewing direction can be interpolated from the
reference images. This four-dimensional data structure
(2 dimensions for u and v, and 2 dimensions for the
camera position) is called a light field, and is briefly
described in Section 4.

If we want to go one step further, and keep the illumi-
nation flexible as well, we end up with a even higher di-
mensional data structure. There are several ways to do
this, but one of the more promising is probably the use
of a space-variant BRDF, i.e. a reflection model whose
parameters can change over a surface. This yields an
approach with a six-dimensional data structure that will
be outlined in Section 5.

No matter which of these approaches is to be taken,
there are some issues that have to be resolved for all
of them. One of them is the choice of an appropriate
resolution for the sampling process. The best resolu-
tion depends on many different factors, some of which
depend on the system (i.e. the amount of memory avail-
able, or the range of viewing distances under which the
shaded object will be seen), and some of which depend
on the shader (i.e. the amount of detail generated by the
shader).

In the case of a 2D texture with fixed camera and
lighting, a sample resolution can still be chosen rela-
tively easily, for example, by letting the user make a
decision. With complex view-dependent effects this is
much harder because it is hard to determine appropri-
ate resolutions for sampling specular highlights whose
sharpness may vary over the surface. An automatic
method for estimating the resolution would be highly
desirable.

Another problem is the sheer number of samples that
we may have to acquire. For example, to sample a
shader as a space variant BRDF with a resolution of

2562256 for the surface parameters u and v, as well as
322 samples for both the light direction and the viewing
direction requires over 68 billion samples, which is un-
feasible both in terms of memory consumption and the
time required to acquire these samples. On the other
hand, it is to be expected that the shader function is rel-
atively smooth, with the high-frequency detail localized
in certain combinations of viewing and light directions
(specular highlights, for example). Thus, a hierarchical
sampling scheme is desirable which allows us to refine
the sampling in areas that are more complex without
having to do a high-density sampling in all areas. At the
same time the hierarchical method should make sure we
do not miss out on any important features. Such an ap-
proach is described in the next section.

2 Area Sampling of Procedural
Shaders

In this section we introduce the concept of area sam-
pling a procedural shader using a a certain kind of arith-
metic that replaces the standard floating point arith-
metic. This affine arithmetic allows us to evaluate a
shader over a whole area, yielding an upper and a lower
bound for all the values that the shader takes on over
this area. This bound can then be used hierarchically to
refine the sampling in areas in which the upper and the
lower bound are far apart (i.e. areas with a lot of detail).
The full details of the method can be found in [10].

We will discuss the general approach in terms of
sampling a 2D texture by evaluating a shader with
a fixed camera position and illumination. The same
methods can however be applied to adaptively adjust
the sampling rates for camera and light position.

2.1 Affine Arithmetic

Affine arithmetic (AA), first introduced in [4], is an
extension of interval arithmetic [16]. It has been suc-
cessfully applied to several problems for which interval
arithmetic had been used before [17, 20, 21]. This in-
cludes reliable intersection tests of rays with implicit
surfaces, and recursive enumerations of implicit sur-
faces in quad-tree like structures [5, 6].

Like interval arithmetic, AA can be used to manip-
ulate imprecise values, and to evaluate functions over
intervals. It is also possible to keep track of truncation
and round-off errors. In contrast to interval arithmetic,

AA also maintains dependencies between the sources
of error, and thus manages to compute significantly
tighter error bounds. Detailed comparisons between in-
terval arithmetic and affine arithmetic can be found in
[4], [5], and [6].

Affine arithmetic operates on quantities known as
affine forms, given as polynomials of degree one in a
set of noise symbols e;.

T=x0+z1€1 + 2262 + - + Tpey

The coefficients x; are known real values, while the val-
ues of the noise symbols are unknown, but limited to
the interval U := [—1,1]. Thus, if all noise symbols
can independently vary between —1 and 1, the range of
possible values of an affine form £ is

(@ =[oo —&a0 48, £=lail.
=1

Computing with affine forms is a matter of replac-
ing each elementary operation f(z) on real numbers
with an analogous operation f*(e1,...,€e,) = f(%)
on affine forms.

If f is itself an affine function of its arguments, we
can apply normal polynomial arithmetic to find the cor-
responding operation f*. For example we get

T+9= (mo+uyo)+(z1+y1)er+- -+ (Tn+Yn)en
T+a= (zo+a)+zier+ -+ Tpey
a = oaxg+ arier+ -+ axpe,

for affine forms £, ¢ and real values a.

3 Non-Affine Operations

If f is not an affine operation, the corresponding func-
tion f*(e1,...,€,) cannot be exactly represented as a
linear polynomial in the ¢;. In this case it is necessary
to find an affine function f%®(ey,...,€,) = 2o + z1€61 +
-+« + 2zp €, approximating f*(eq, ..., €,) as well as pos-
sible over U™. An additional new noise symbol € has
to be added to represent the error introduced by this ap-
proximation. This yields the following affine form for
the operation z = f(z):

.é':fa(el,...,

with & ¢ {1,...,n}. The coefficient zj of the new
noise symbol has to be an upper bound for the error
introduced by the approximation of f* with f¢:

J€n)—f€e1, ..., €n)| s € € U

€n) = 20 + z1€1 + - - - + zZnen + 2xex,

2 > max{|f*(ey, ..

For example it turns out (see [4] for details) that a
good approximation for the multiplication of two affine
forms & and ¢ is

Z = zoyo+(oy1+yoz1) €1+ - - H(ZoYn+YoTn) €ntuvey,

withw =)7, |z;| and v =)", |y;|. In general, the
best approximation f¢ of f* minimizes the Chebyshev
error between the two functions.

The generation of affine approximations for most of
the functions in the standard math library is relatively
straightforward. For a univariate function f(z), the iso-
surfaces of f*(€1,...,€,) = f(xo+ 161+ -+ Tpey)
are hyperplanes of U™ that are perpendicular to the vec-
tor (z1,...,2,). Since the iso-surfaces of every affine
function f%(e1,...,€n) = 20 + z1€1 + -+ - + 2p€y are
also hyperplanes of this space, it is clear that the iso-
surfaces of the best affine approximation f¢ of f* are
also perpendicular to (z1,...,zy). Thus, we have

e,

for some constants « and 3. As a consequence, the min-
imum of max,,cy | f® — f*| is obtained by minimizing
maxecu | (#) -0~ | = maxyeay | ()~ 0z],
where [a, b] is the interval [Z]. Thus, approximating f*
has been reduced to finding a linear Chebyshev approx-
imation for a univariate function, which is a well un-
derstood problem [3]. For a more detaile discussion,
see [10].

Most multivariate functions can handled by reducing
them to a composition of univariate functions. For ex-
ample, the maximum of two numbers can be rewritten
as max(z,y) = maxy(z — y) + y, with maxg(z) :
max(z,0). For the univariate function max(z) we can
use the above scheme.

3.1 Application to Procedural Shaders

In order to apply AA to procedural shaders, it is nec-
essary to investigate which additional features are pro-
vided by shading languages in comparison to stan-
dard math libraries. In the following, we will restrict
ourselves to the functionality of the RenderMan shad-
ing language [9, 18, 22], which is generally agreed to
be one of the most flexible languages for procedural
shaders. Since its features are a superset of most other
shading languages (for example [2] and [15]), the de-
scribed concepts apply to these other languages as well.

,€n) = ai+f = a(zot+zir€1+ - +xn€,)+HS

Shading languages usually introduce a set of spe-
cific data types and functions exceeding the functional-
ity of general purpose languages and libraries. Most of
these additional functions can easily be approximated
by affine forms using techniques similar to the ones out-
lined in the previous section. Examples for this kind of
domain specific functions are continuous and discon-
tinuous transitions between two values, like step func-
tions, clamping of a value to an interval, or smooth Her-
mite interpolation between two values.

The more complicated features include splines,
pseudo-random noise, and derivatives of expressions.
For an in-depth discussion of these functions we refer
the reader to the original paper [10].

New data types in the RenderMan shading language
are points and color values, both simply being vectors
of scalar values. Affine approximations of the typical
operations on these data types (sum, difference, scalar-
, dot- and cross product, as well as the vector norm)
can easily be implemented based on the primitive oper-
ations on affine forms.

Every shader in the RenderMan shading language is
supplied with a set of explicit, shader specific parame-
ters that may be linearly interpolated over the surface,
as well as fixed set of implicit parameters (global vari-
ables). The implicit parameters include the location of
the sample point, the normal and tangents in this point,
as well as vectors pointing towards the eye and the light
sources. For parametric surfaces, these values are func-
tions of the surface parameters u and v, as well as the
size of the sample region in the parameter domain: du
and dv.

For parametric surfaces including all geometric
primitives defined by the RenderMan standard, the
explicit and implicit shader parameters can therefore
be computed by evaluating the corresponding function
over the affine forms for u, v, du, and dv. The affine
forms of these four values have to be computed from
the sample region in parameter space. For many appli-
cations, du and dv will actually be real values on which
the affine forms of u and v depend: 4 = ug + du - €
and 0 = vy + dv - €.

With this information, we can set up a hierarchical
sampling scheme as follows. The shader is first evalu-
ated over the whole parameter domain (v = 0.5+ 0.5 -
€1, v = 0.5 4+ 0.5 - €2). If the resulting upper and lower
bound of the shader are too different, the parameter do-
main is hierarchically subdivided into four regions, and
area samples for these regions are computed. The re-

cursion stops when the difference between upper and
lower bound (error) is below a certain limit, or if the
maximum subdivision level is reached. Results of this
approach together with an error plot are given in Fig-
ure 1.

3.2 Analysis

In our description we uses affine arithmetic to obtain
conservative bounds for shader values over a param-
eter range. In principle, we could also use any other
range analysis method for this purpose. It is, however,
important that the method generates tight, conservative
bounds for the shader. Conservative bounds are impor-
tant to not miss any small detail, while tight bounds
reduce the number of subdivisions, and therefore save
both computation time and memory.

We have performed tests to compare interval arith-
metic to affine arithmetic for the specific application of
procedural shaders. Our results show that the bounds
produced by interval arithmetic are significantly wider
than the bounds produced by affine arithmetic. Fig-
ure 2 shows the wood shader sampled at a resolution of
512 x 512. The error plots show that interval arithmetic
yields errors up to 50% in areas where affine arithmetic
produces errors below 1/256. As a consequence, the
textures generated from this data by assigning the mean
values of the computed range to each pixel, reveal se-
vere artifacts in the case of interval arithmetic.

The corresponding error histogram in Figure 3 shows
that, while the most of the per-pixel errors for affine
arithmetic are are less than 3%, most of the errors for
interval arithmetic are in the range of 5%-10%, and a
significant number is even higher than this (up to 50%).

These results are not surprising. All the expressions
computed by a procedural shader depend on four input
parameters: u, v, du, and dv. Affine arithmetic keeps
track of most of these subtle dependencies, while inter-
val arithmetic ignores them completely. The more com-
plicated functions get, the more dependencies between
the sources of error exist, and the bigger the advantage
of AA. These results are consistent with prior studies
published in [4], [5], and [6].

The bounds of both affine and interval arithmetic can
be further improved by finding optimal approximations
for larger blocks of code, instead of just library func-
tions. This process, however, requires human interven-
tion and cannot be done automatically.

This leaves us with the method presented here as

the only practical choice, as long as conservative er-
ror bounds are required. Other applications, for which
an estimate of the bounds is sufficient, could also use
Monte Carlo sampling. In this case it is interesting to
analyze the number of Monte Carlo samples and the re-
sulting quality of the estimate that can be obtained in
the same time as a single area sample using AA. Ta-
ble 1 shows a comparison of these numbers in terms of
floating point operations (FLOPS) and execution time
(on a 100MHz R4000 Indigo) for the various shaders
used throughout this paper.

For more complicated shaders the relative perfor-
mance of AA decreases, since more error variables are
introduced due to the increased amount of non-affine
operations. The table shows that, depending on the
shader, 5 to 10 point samples are as expensive as a sin-
gle AA area sample. To see what this means for the
quality of the bounds, consider the screen shader with a
density of 0.5. The density of 0.5 means that 75 percent
of the shader will be opaque, while 25 percent will be
translucent. If we take 7 point samples of this shader,
which is about as expensive as a single AA sample, the
probability that all samples compute the same opacity
is 0.757 4+ 0.257 ~ 13.4 percent. Even with 10 samples
the probability is still 5.6 percent.

For the example of using area samples as a subdivi-
sion criterion in hierarchical radiosity, this means that a
wall covered with the screen shader would have a prob-
ability of 13.4 (or 5.6) percent of not being subdivided
at all. The same probability applies to each level in the
subdivision hierarchy independently. These numbers
indicate that AA is superior to point sampling even if
only coarse estimates of the error bounds are desired.

4 Light Fields

Let us now consider how the method can be used in a
scenario with a varying camera location, but fixed illu-
mination. This is somewhat speculative, because it has
never actually been tried. It is therefore to be expected
that in practical implementations some new issues will
arise that will have to be resolved in future research.

Before we outline an approach for adaptively acquir-
ing light fields from procedural shaders, we will first
review the concept of a light field itself.

Figure 1: Several examples of RenderManshaders samples with affine arithmetic. Left: per-pixel error bounds,
center: generated texture, right: texture applied to 3D geometry.

* \/ \)
]

Figure 2: The wood shader sampled at a resolution of 512 x 512. From left to right: error plot using interval
arithmetic, resulting texture, error plot using affine arithmetic, resulting texture.

N

60000 T T T T T T T T T
"interval arithmetic" ——
50000 b
40000 - -
0
2 30000 | .
a
E=3
20000 - -
10000 | -
1 1 1 1 1

0
0 0.050.10.150.20.250.30.350.40.450.5
error

500000 T T T T T T T T T
450000 ["affine arithmetic" ——
400000 - -
350000 |- -
300000 |- -
250000 |- -
200000 |- -
150000 -
100000 -
50000 -

0
0 0.050.10.150.20.250.30.350.40.450.5
error

pixels

Figure 3: Error histograms for the wood shader for interval arithmetic (left) and affine arithmetic (right).

Shader FLOPS (ps) FLOPS (aa) | ratio Time (ps) Time (aa) | ratio
screen 24 214 | 1:8.92 4.57 3348 | 1:7.32
wood 803 6738 | 1:8.39 8.34 86.53 | 1:10.38
marble 4386 28812 | 1:6.57 9.46 88.52 | 1:9.36
bumpmap 59 487 | 1:8.25 3.76 20.43 | 1:5.43
eroded 2995 26984 | 1:9.01 18.85 193.33 | 1:10.27

Table 1: FLOPS per sample and timings for 4096 samples, for stochastic point sampling (ps) and AA area sampling

(aa).

4.1 Definition

A light field[13] is a 5-dimensional function describing
the radiance at every point in space in each direction.
It is closely related to the plenoptic function introduced
by Adelson[1], which in addition to location and ori-
entation also describes the wavelength dependency of
light.

In the case of a scene that is only to be viewed from
outside a convex hull, it is sufficient to know what ra-
diance leaves each point on the surface of this con-
vex hull in any given direction. Since the space out-
side the convex is assumed to be empty, and radiance
does not change along a ray in empty space, the di-
mensionality of the light field can be reduced by one,
if an appropriate parameterization is found. The so-
called two-plane parameterization fulfills this require-
ment. It represents a ray via its intersection points with
two parallel planes. Several of these pairs of planes
(also called slabs) are required to represent a complete
hull of the object. Since each of these points is char-
acterized by two parameters in the plane, this results in
a 4-dimensional function that can be densely sampled
through a regular grid on each plane (see Figure 4).

One useful property of the two-plane parameteriza-

/
/

u,v) plane

aSabyl
[[N/

AT
e

\

(s,t) plane

Figure 4: A light field is a 2-dimensional array of im-
ages taken from a regular grid of eye points on the
(s, t)-plane through a window on the (u,v)-plane. The
two planes are parallel, and the window is the same for
all eye points.

tion is that all the rays passing through a single point on
the (s, t)-plane form a perspective image of the scene,

with the (s,t) point being the center of projection.
Thus, a light field can be considered a 2-dimensional
array of perspective projections with eye points regu-
larly spaced on the (s, t)-plane. Other properties of this
parameterization have been discussed in detail by Gu et
al.[8].

Since we assume that the sampling is dense, the ra-
diance along an arbitrary ray passing through the two
planes can be interpolated from the known radiance val-
ues in nearby grid points. Each such ray passes through
one of the grid cells on the (s,t)-plane and one on the
(u,v)-plane. These are bounded by four grid points on
the respective plane, and the radiance from any of the
(u, v)-points to any of the (s,t)-points is stored in the
data structure. This makes for a total of 16 radiance val-
ues, from which the radiance along the ray can be inter-
polated quadri-linearly. As shown in by Gortler et al[7]
and Sloan et al.[19], this algorithm can be considerably
sped up by the use of texture mapping hardware. Sloan
et al.[19] also propose a generalized version of the two-
plane parameterization, in which the eye points can be
distributed unevenly on the (s, t)-plane, while the sam-
ples on the (u,v)-plane remain on a regular grid.

A related data structure is the surface light field [14,
23], in which two of the four parameters of the light
field are attached to the surface parameters. That is, u
and v correspond to the parameters of a parametric sur-
face, while s and ¢ specify the viewing direction. The
details of the different variants of surface light fields are
beyond the scope of this document, and we refer the in-
terested reader to the original papers [14, 23].

4.2 Sampling of Light Fields

The sampling method from Section 3.1 can be adapted
to the adaptive sampling of light fields from procedural
shaders. In addition to computing bounds for the shader
over a large parameter domain that we then adaptively
refine, we now also compute bounds over a continuum
of camera positions. For example, we can start with a
large bounding box specifying all possible camera po-
sitions, and then adaptively refine it. Or, in the case of
a two-plane parameterized light field, we could define
the range of camera positions as a rectangular region on
the camera plane.

It is not clear at this point how the acquired hier-
archical light field can be used directly for rendering
in interactive applications. However, a regularly sam-
pled two-plane parameterized light field is easy to gen-

erate from the hierarchical one by interpolation. This
approach does not resolve the relatively large memory
requirements of light fields, but it should dramatically
reduce the acquisition time.

5 Space Variant BRDFs

The situation gets even more complex when we also
want to allow for changes in the illumination. The
most reasonable approach for dealing with this situa-
tion seems to be storing a reflection model (BRDF) for
every point on the object. That is, instead of precomput-
ing the shader for all possible lighting situations (which
would require even more space), we only determine the
BRDF at every surface location (i.e. a space-variant
BRDF by considering the effect of a single directional
light source which can be pointing at the object from
any direction.

As mentioned in the introduction, a space-variant
BRDF is a six-dimensional function, and keeping a six-
dimensional table is prohibitive in size. Therefore, a
different representation has to be found. Again, we
should be able to use AAto generate a relatively sparse,
adaptive sampling of the shader, which is, however, not
well suited for interactive rendering.

On the other hand, the graphics hardware is becom-
ing more and more flexible, so that it is now possible
to render certain simple reflection models where the
parameters of the model can be varied across the sur-
face [11]. This yields a limited form of space-variant
BRDF, where the BRDF actually conforms to a single
analytical reflection model, but its parameters can be
texture-mapped and can therefore vary across the sur-
face.

Unfortunately, the reflection models considered
in [11] are not yet complex enough to capture all the
effects that a procedural shader may produce. Other
models that provide a general purpose basis for arbi-
trary effects do exist [12], but it is currently no possible
to render them in hardware with space-variant parame-
ters.

Once we have found a reflection model that is ex-
pressive enough for our purposes and can be rendered
in hardware, we still have to determine its parameters in
every point of the object from the hierarchical samples
acquired with the adaptive sampling approach. This,
again, is an open research problem.

6 Conclusion

In this section we have raised some issues regarding
the sampling of complex procedural shaders as a pre-
processing step for interactive rendering. We were able
to describe a hierarchical sampling scheme that adap-
tively determines an appropriate sampling resolution
for different parts of the shader. The application of
this method to determining view-dependent informa-
tion from a shader in such a way that it is efficient to
use in interactive applications is an open problem. We
were able to identify some issues arising with this sub-
ject, and hinted towards some possible solutions, but
more research will have to be done for a complete so-
lution.

References

[1] E.H. Adelson and J. R. Bergen. Computational Models
of Visual Processing, chapter 1 (The Plenoptic Func-
tion and the Elements of Early Vision). MIT Press,
Cambridge, MA, 1991.

Alias/Wavefront. OpenAlias Manual, 1996.

Elliot W. Cheney. Introduction to Approximation The-
ory. International series in pure and applied mathemat-
ics. McGraw-Hill, 1966.

Jodo L. D. Comba and Jorge Stolfi. Affine arithmetic
and its applications to computer graphics. In Anais do
VII Sibgrapi, pages 9-18, 1993.

Luiz Henrique Figueiredo. Surface intersection using
affine arithmetic. In Graphics Interface ’96, pages
168-175, 1996.

Luiz Henrique Figueiredo and Jorge Stolfi. Adaptive
enumeration of implicit surfaces with affine arithmetic.
Computer Graphics Forum, 15(5):287-296, 1996.

Steven J. Gortler, Radek Grzeszczuk, Richard Szelin-
ski, and Michael F. Cohen. The Lumigraph. In Com-
puter Graphics (SIGGRAPH ’96 Proceedings), pages
43-54, August 1996.

Xianfeng Gu, Steven J. Gortler, and Michael F. Cohen.
Polyhedral geometry and the two-plane parameteriza-
tion. In Rendering Techniques 97 (Proceedings of
Eurographics Rendering Workshop), pages 1-12, June
1997.

Pat Hanrahan and Jim Lawson. A language for shad-
ing and lighting calculations. In Computer Graphics
(SIGGRAPH 90 Proceedings), pages 289-298, Au-
gust 1990.

[10] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter
Seidel. Sampling procedural shaders using affine arith-
metic. ACM Transactions on Graphics, pages 158—
176, 1998.

Jan Kautz and Hans-Peter Seidel. Towards Inter-
active Bump Mapping with Anisotropic Shift-Variant
BRDFs. In Eurographics/SIGGRAPH Workshop on
Graphics Hardware 2000, pages 51-58, August 2000.

Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Tor-
rance, and Donald P. Greenberg. Non-linear approxi-
mation of reflectance functions. In Computer Graphics
(SIGGRAPH 97 Proceedings), pages 117-126, Au-
gust 1997.

[11]

[12]

Marc Levoy and Pat Hanrahan. Light field rendering.
In Computer Graphics (SIGGRAPH ’96 Proceedings),
pages 3142, August 1996.

Gavin Miller, Steven Rubin, and Dulce Ponceleon.
Lazy decompression of surface light fields for precom-
puted global illumination. In Rendering Techniques ’98
(Proceedings of Eurographics Rendering Workshop),
pages 281-292, March 1998.

[15] Steven Molnar, John Eyles, and John Poulton. Pix-
elFlow: High-speed rendering using image composi-
tion. In Computer Graphics (SIGGRAPH 92 Proceed-

ings), pages 231-240, July 1992.

[16] Ramon E. Moore. [Interval Analysis. Prentice Hall,

Englewood Cliffs, New Jersey, 1966.

F. Kenton Musgrave, Craig E. Kolb, and Robert S.
Mace. The synthesis and rendering of eroded fractal
terrains. In Computer Graphics (SIGGRAPH ’89 Pro-
ceedings), pages 41-50, July 1989.

[17]

Pixar. The RenderMan Interface. Pixar, San Rafael,
CA, Sep 1989.

Peter-Pike Sloan, Michael F. Cohen, and Steven J.
Gortler. Time critical Lumigraph rendering. In Sym-
posium on Interactive 3D Graphics, 1997.

[20] John M. Snyder. Generative Modeling for Computer
Graphics and CAD: Symbolic Shape Design Using In-

terval Analysis. Academic Press, 1992.

[21] John M. Snyder. Interval analysis for computer graph-
ics. In Computer Graphics (SIGGRAPH ’92 Proceed-

ings), pages 121-130, July 1992.

Steve Upstill. The RenderMan Companion. Addison
Wesley, 1990.

D. Wood, D. Azuma, K. Aldinger, B. Curless,
T. Duchamp, D. Salesin, and W. Stuetzle. Surface Light
Fields for 3D Photography. In Proceedings of SIG-
GRAPH 2000, pages 287-296, July 2000.

Chapter 10
Multi-Pass RenderMan

Marc Olano

Multi-Pass RenderMan

Marc Olano
SGl

1. The RenderMan Shading Language

RenderMan is an interface for talking to Renderers [Upstill90]. There are several RenderMan-
compatible software renderers, the most well known of which is Pixar's PhotoRealistic RenderMan.
One of the most interesting features of the RenderMan Interface is its shading language
[Hanrahan90]. The RenderMan shading language is not the only shading language for software
rendering (see Chapter 2), but it is often used as a standard of comparison thanks to its power and
its popularity.

So, if RenderMan is "the standard", why aren't there any real-time RenderMan implementations? It
isn't that we wouldn't want one. First, graphics hardware simply isn't capable enough yet. Second,
the running time for a RenderMan shader can be arbitrarily long. Finally, real-time rendering
encourages a different style of shader writing than software rendering.

1.1. Necessary Hardware Features

Why isn't interactive graphics hardware capable of RenderMan, real-time or not? The principle
feature lacking on current graphics hardware is floating point. Machines with floating-point have
been designed (e.g. PixelFlow), but none have made it to commercial availability. All existing
graphics hardware store results and do most computations using clamped fixed point
representations. In contrast, the RenderMan shading language has only one numeric
representation - floating point. This provides great freedom to the shader writer. Quantities can be
expressed in physical units; overflow and loss of precision are occasional problems, not
something you worry about on every line of source; you can even have an enormous range in
scale and precision across a single surface.

At the time [Peercy00] was written, most hardware also lacked the ability to look up texture results
based on previous computations. Many current graphics systems support either pixel texture
(interpret per-pixel framebuffer color as texture coordinates) or dependent texture (interpret
previous texturing results as new texture coordinates). Either of these extensions is sufficient to
allow RenderMan's indirect lookups.

If the necessary hardware capabilities were present, it would be completely possible to have a
hardware accelerated RenderMan. We have demonstrated this using a software implementation of
OpenGL (a modified version of the SGI OpenGL sample implementation). This modified OpenGL
uses floating point for all computations and storage, it supports pixel texture and color matrix
OpenGL extensions, and base OpenGL 1.2. This demo system translates any RenderMan shader
into multiple OpenGL rendering passes.

1.2. Arbitrary running time

The RenderMan shading language is similar in structure to C. Like C, it is easy to write programs

10 - 1

that never stop. A shader that never finishes isn't terribly interesting on any rendering system,
software or real-time. However, shaders can (and sometimes are!) thousands of lines long or loop
for thousands of iterations.

More concretely, even if we had the ability to run RenderMan on graphics hardware we couldn't
guarantee that all RenderMan shaders would run in real-time. Some

1.3. Programming style

The final factor preventing real-time RenderMan is shader programming style. It isn't that real-time
shaders can't be written in RenderMan, but even with all the necessary hardware features, even
perfectly ordinary RenderMan shaders may not run in real-time. Shaders written for real-time
rendering typically rely heavily on stuffing as much computation as possible into the values stored
in each texture, leaving the shader to combine these textures in interesting ways. Shaders written
for RenderMan do use texture, but they can also use arbitrary computation. That's part of what
makes the shading language so powerful.

2. Sample RenderMan shader

An example is worth a thousand words. This simple RenderMan shader creates a simple beach
ball. The ball appearance is entirely procedurally generated, there no textures are used. This
example demonstrates both how, given the right extensions, translating a RenderMan shader to
multi-pass OpenGL can by quite straightforward, and how this doesn't necessarily give real-time
RenderMan.

surface

beachball (
uniform float Ka = 1, Kd = 1;
uniform float Ks = .5, roughness = .1;
uniform color starcolor = color (1,.5,0);
uniform color bandcolor = color (1,.2,.2);

uniform float rmin = .15, rmax = .4;
uniform float npoints = 5;

)

10-2

color Ct;
float angle, r, a, in_out;
uniform float starangle = 2*PI/npoints;
uniform point p0 = rmax*point(cos(0),sin(0),0);
uniform point pl = rmin*
point (cos (starangle/2),sin(starangle/2),0) ;
uniform vector d0 = pl - p0;
vector dil;

angle = 2*PI * g;
r = .5-abs(t-.5);
a = mod(angle, starangle)/starangle;

if (a >= 0.5)
a=1- a;
dl = r*(cos(a), sin(a),0) - pO0;
in_out = step (0, zcomp (d0OAdl)) ;
Ct = mix(mix(Cs, starcolor, in_out), bandcolor, step(rmax,r));

/* specular shading model */
normal Nf = normalize(faceforward(N,I));
01 = Os;
Ci =0s * (Ct * (Ka * ambient() +
Kd * diffuse(Nf)) +
Ks * gspecular (Nf, -normalize(I),roughness)) ;

3. Passes for varying computation

Each line of text below is a pass used as part of the varying computation in the above shader.
Corresponding images appear to the left, though no image appears for any pass that does not
change the framebuffer. No optimizations are included in this example as they can make the
correspondence between source code and passes harder to follow. In the thumbnails here, all
values are clamped to [0,1] for display purposes onlyne value stored in the floating point
framebuffer or floating point textures still remain unclamped.

// set stencil for masking in later passes

10-3

// draw geometry with 's' as color
angle = 2*PI * s;

// use blend to multiply by 2*PI
angle = 2*%PI * g;
// store in texture named "angle"
angle = 2*PI * s;

// draw geometry with 't' as color
r = .5-abs(t-.5);

// use blend to subtract .5
r = .5-abs(t-.5);

// copy through "abs" color table
r = .5-abs(t-.5);

// blend: subtract from .5

r = .5-abs(t-.5);

// store in texture named "r"
r = .5-abs(t-.5);

10-4

o
(]

// load "angle" from texture
a = mod(angle, starangle)/starangle;

// blend: multiply by 1/starangle
a = mod (angle, starangle /starangle;

// copy through "floor" color table
a = mod(angle, starangle /starangle;

// blend: multiply by starangle
a = mod (angle, starangle /starangle;

// blend: subtract from "angle"
a = mod(angle, starangle)/starangle;

// blend: multiply by 1/starangle

a = mod(angle, starangle)/starangle
// store in texture named "a"

a = mod(angle, starangle)/starangle
// load "a" from texture

if (a >= 0.5)

10-5

//
if

//
if

//

//

//
//

//
a1

blend: subtract .5
(a >= 0.5)

alpha test: set stencil mask
(a >= 0.5)

load "a" from texture
a=1 - a;

blend: subtract from 1
a=1 - a;

load "a" & combine with stencil
a=1- a;

store in texture named "a"
a=1- a;

load "a" from texture
= r*(cos(a), sinf(a),0) - pO0;

10-6

//
d1

//

//
a1

//
d1

//

//
d1

//
d1

//
d1

copy through "cos" color table
= r*(cos(a), sin(a),0) - p0;
store in texture named "ftempO"

load "a" from texture
= r*(cos(a), sin(a),0) - pO0;

copy through "cos" color table
= r*(cos(a), sin(a),0) - p0;
store in texture named "ftempl"

load constant wvalue of 0
= r*(cos(a), sin(a),0) - pO0;

load "ftempO" into red
= r*(cos(a), sin(a),0) - pO0;

load "ftempl" into green
= r*(cos(a), sin(a),0) - po0;

10-7

(]
®
®
.
N
O

// blend: multiply by texture "r"
dl = r*(cos(a), sin(a),0) - p0;

// blend: subtract uniform pO

dl = r*(cos(a), sin(a),0) - p0
// store in texture named "dl"
dl = r*(cos(a), sin(a),0) - p0

// load uniform 4o
in_out = step (0, zcomp (d0Adl)) ;
// color matrix: store in yzx order in "ctempO"

// color matrix: store in zxy order in "ctempl"

// load "dl" from texture
in_out = step(0, zcomp (d0Adl)) ;
// color matrix: store in yzx order in "ctemp2"

// color matrix: shuffle to zxy order
in out = step(0, zcomp (d0Adl)) ;

// blend: multiply by "ctempO"
in_out = step(0, zcomp (dOAdl)) ;
// store back into "ctempO"

10-8

// load "ctempl" from texture
in_out = step(0, zcomp (dOAdl));

// blend: multiply by "ctemp2"
in_out = step(0, zcomp (d0Adl)) ;

// blend: subtract "ctempO"
in_out = step(0, zcomp (dOAdl));

// blend: subtract "ctempO"
in_out = step(0, zcomp (d0Adl)) ;

// color matrix: copy z to all channels
in_out = step(0, zcomp (d0Adl));

// blend: subtract 0 (to shift step)

in out = step(0, zcomp (d0Adl));

// copy through "step" color table
in out = step(0, zcomp(dOAdl));
// store in texture named "in out"
in out = step(0, zcomp (d0OAdl))

10-9

//
//

//
//

//

load uniform Cs

.mix (Cs, starcolor, in out)...

load "in_out" into alpha

.mix (Cs, starcolor, in out)...

blend: mix Cs and starcolor

.mix(Cs, starcolor, in out)...

store in texture named "ctempO"

load "r" from texture

..mix (..., bandcolor, step(rmax,r));

//

blend: subtract from rmax

...mix (..., bandcolor, step(rmax,r));

/)
//

//
//

copy through "step" color table

..mix (..., bandcolor, step(rmax,r));

store in texture named "ftempO"

load "ctempO"

.mix (..., bandcolor, step(rmax,r));

load "ftempO" into alpha

..mix (..., bandcolor, step(rmax,r));

10-10

e(€0

//
//
ct

//

/)

//

//

//

//

blend: mix with bandcolor

.mix (..., bandcolor, step(rmax,r))}

store in texture named "Ct"
= mix(...);

draw geometry, with 'I' as color

..normalize (faceforward (N, I)) ;

store in texture named "ctempO"

draw geometry, with 'Ng' as color

.normalize (faceforward (N, I));

blend: multiply by texture "ctempO"

.normalize (faceforward (N, I));

color matrix: add x+y-+z

.normalize (faceforward (N, I));

copy through "flip" color table

..normalize (faceforward (N, I));

10 - 11

// blend: draw 'N' & multiply
...normalize (faceforward (N, I));
// store in texture named "ctempO"

// blend: multiply (to square)
normal Nf = normalize(...);

// color matrix: sum channels
normal Nf = normalize(...);

// copy through "invsgrt" color table
normal Nf = normalize(...);

// blend: multiply by texture "ctempO"
normal Nf = normalize(...);

// store in texture named "Nf"

normal Nf = normalize(...)

// Lighting passes omitted
Ci=...(... + K4 * diffuse(Nf))...
// store in texture named "ctempO"

10-12

//
ci

//
Ci

//
Ci
//

//
Ci

//
ci

//
Ci
//
Ci
//
Ci
//
Ci

Lighting passes omitted
= ...(Ka * ambient() + ...)...

blend: add "ctempO"
= ...(Ka * ambient() + ...)...

blend: multiply by "Ct"
= ...Ct * (...)...
store in texture named "ctempO"

Lighting passes omitted
= ...Ks * specular(...));

blend: multiply by uniform 'Ks'
= ...Ks * gpecular(...));

blend: add "ctempO" (diffuse &
=08 * (...);

blend: multiply by Os

=0s * (...);

load "Ci" outside object using
=0s * (...);

store combined Ci into texture
=0s * (...);

ambient)

stencil

named "Ci"

10-13

10- 14

Chapter 11

Analysis of Shading Pipelines
John C. Hart

A Framework for Analyzing Real-
Time Advanced Shading Techniques

John C. Hart
University of Illinois
jch@cs.uiuc.edu

Abstract

Numerous techniques have been developed to perform advanced
shading operations in real time. The real-time versions vary greatly
from their original implementations due to the constraints of existing
hardware and programming libraries. This paper introduces a grammar
for articulating these modern real-time shading pipelines. We survey
the existing techniques, using the grammar to classifies them into a
taxonomy illustrating the commutations that differentiate the pipelines
from the classical version and each other. The taxonomy follows a
natural development that concludes with texture shading, which is
applied to four advanced shaders to explore its versatility.

1 Introduction

The task of presenting a three-dimensional object on a two-dimensional
display relies largely on perceptual cues the brain has evolved for
resolving the three-dimensional spatial configuration of a scene from its
projection onto the eye’s two-dimensional retina. One of these cues is
shading: the variation in color and intensity of a surface that indicates
its position and orientation within a scene.

Consumer computer graphics has finally outgrown the classic lighting
model composed of Lambertian diffuse and Phong/Blinn specular
reflection that dominated hardware implementation for the past two
decades. [Cook & Torrance, 1982] noted that the standard technique of
matching the diffuse component with the surface material color and the
specular component with the color of the light source was a good
model for plastic, which consists of a suspension of diffusing pigments
covered by a thin clear specular membrane. With the support of
advanced shaders, consumer computer graphics will finally overcome
its cliché plastic appearance.

Procedural shaders generate the color of a point on the surface by
running a short program. The Renderman system, which contains a
little language specifically developed for procedural shaders, is the
current industry standard for procedural shading. Hanrahan suggests
that Renderman, while adequate for production-quality shading, may
not be the most appropriate choice for specifying real-time shaders
[Hanrahan, 1999].

Peter K. Doenges
Evans & Sutherland Computer Corp.
pdoenges@es.com

Shaders determine the color of light exiting a surface as a function of
the light entering a surface and the properties of the surface. Shaders
combine the cues of lighting, which determines how light uniformly
interacts with the surface, and fexturing, which determines how light
nonuniformly interacts with the surface. We use the stationarity of the
phenomena as a key differentiator between surface lighting and surface
texturing. Hence, “texturing” is a feature parameterized in part by
position whereas “lighting” is not.

Section 3 surveys current real-time advanced shading strategies.
Finding information on these topics is not easy. The techniques have
resulted as much from developers as from researchers, and these
techniques appear in tutorials, how-to’s, product specifications and
reports more often than in journals and conference proceedings. This
survey collects these ideas together in one place and presents the
techniques in a uniform and organized manner to allow better
comparison and understanding of their benefits and drawbacks.

This paper is in part a response to the keynote talk of the
Eurographics/SIGGRAPH 1999 Graphics Hardware Workshop
[Hanrahan, 1999]. This talk lamented the fact that there are many
directions hardware vendors are considering to support advanced
shading. This situation was best described by the slide in Figure 1.
Section 3 develops a natural progression from the standard graphics
pipeline through fragment lighting, multitexturing and multipass
eventually concluding with texture shading.

Towards Hardware Abstractions

Multi-Pass

Texture Shading Multi-Texturing

Fragment Lighting

Figure 1. Slide 22 of [Hanrahan, 1999]

Hanrahan recommended that graphics hardware community should
investigate solutions to this problem by “commuting the graphics
pipeline.” The grammar introduced in Section 2 provides a
representation where such commutations can be articulated. analyzed
and classified. Such grammars are already familiar in the analysis of
rendering. A grammar associated with the rendering equation [Kajiya,
1985] has been used to classify the transport of light from its source to

11-1

the viewer as a sequence of symbols corresponding to emittance,
occlusion, and specular and diffuse surface reflections.

This paper also follows up on the ideas of [McCool & Heidrich, 1999],
which proposed a texture shader built on a multitexturing stack
machine and a wider variety of texture coordinate generation modes.
Section 4 begins to look in detail at what kinds of shaders and
variations are possible using these advanced programmable shader
techniques.

2 A Graphics Pipeline Grammar

This section develops a grammatical representation for the graphics
shading pipeline. The symbols used in this grammar are listed in Figure

X vertex in model coordinates

u surface parameterization (u,v)

s shading parameter vector (N,V,R,H,...)

T graphics pipeline from model to viewport coordinates
X; pixel in viewport coordinates (x,,y;)

O rasterization (interpolation and sampling)

¢ color vector (R,G,B)

@ color combination function
C frame buffer

T texture map

< assignment

Figure 2: Operators in the shading pipeline grammar.

We denote a two-dimensional surface parameterization as u = (u,v).
We denote the shading parameters as a vector s that contains light
source and surface material constants, as well as the local coordinate
frame and the view vector. We use the vector x to represent a triangle
vertex with its position in model coordinates, and x; to denote the same
point in viewport (screen) coordinates. The 2-D surface texture
coordinates are an attribute of the vertex and are denoted u x. Likewise,
the shading parameter vector is also a vertex attribute and is denoted s
x. Note that since these functions accept a single parameter, we
eliminate the use of paranthesis in favor of a grammatical expression.

We denote color ¢ = (R,G,B). The map p: s — ¢ denotes a shader, a
procedure that maps shading parameters to a color ¢. The operator 7: u
— ¢ is a 2-D texture map that returns a color ¢ given surface texture
coordinates u.

We use capital letters to denote maps that are implemented with a
lookup table, such as the texture map 7. We will use the < operator to
denote assignment to this table. For example, the framebuffer C:x; — ¢
is a mapping from screen coordinates X, to a color ¢. The frame buffer
is implemented as a table, and assignment of an element ¢ into this
table at index x; is denoted as C x, < ¢.

Most of the standard graphics pipeline can be decomposed into a
general projection 7 that maps vertices from 3-D model coordinates x
to 2-D screen coordinates X, , and a rasterization that takes these screen
coordinate vertices and fills in the pixels of the polygon they describe
using linear interpolation. It will be useful for the analysis of the
aliasing artifacts to know exactly when attributes are interpolated
across a polygon, as this signals when continuous functions are
discretely sampled. We will indicate that a continuous function has
been discretely sampled by rasterization with a delta function operator
d.

Hence, x is a polygon vertex in model-coordinates, T x is the screen
coordinate corresponding to that point and 6 T x reminds us that the
coordinates of that pixel were discretely interpolated from the screen
coordinates of the polygon's vertices. The goal of the next section will
be to articulate and analyze various techniques for assigning a value to
the screen pixel C d T x.

3 Procedural Shading Techniques

This section analyzes various graphics shading pipelines, including the
standard pipeline, deferred shading, multipass, multitexturing,
environment map techniques and texture shading. It also makes explicit
shading techniques supported by these pipelines, including Phong
mapping and environment mapped bump mapping.

3.1 Standard Graphics Pipeline Shading

The standard implementation of the modern graphics pipeline is
dominated by the linear interpolation of vertex attributes at the end of
the pipeline.

Gouraud Interpolation. The standard graphics pipeline
implementation of lighting is expressed in this notation as

Conmx<dpsx. (D)

Lighting is computed per-vertex, and the resulting color is interpolated
(using a technique known as Gouraud shading) across the pixels of the
screen-space polygon by the rasterization engine.

Texture Mapping. Texturing is performed in screen coordinates and
texture coordinates are assigned per-vertex and interpolated across the
pixels of the screen-space polygon by the rasterization engine.
Interpolated texture coordinates are then index into a texture map to
determine a per-pixel texture color

Codnx«Tdux 2)

The aliasing artifacts introduced by texture mapping occur when the
sampling rate of the delta function on the LHS of (2) (the resolution of
the polygon's screen projection) disagrees with the sampling rate of the
delta function on the RHS (the texture's resolution). Methods for
resampling the texture map based on the MIP map [Williams, 1983] or
the summed-area table [Crow, 1984] fix this problem by adjusting the
sampling density on the RHS of (2) to match that of the LHS.

11-2

An additional though subtle issue with the d function on the RHS of (2)
is perspective correction. Since the projection 7 on the LHS performs a
perspective divide, then the & rasterization function on the RHS must
also perform a per-pixel perspective divide.

Modulation. The results of lighting and texture mapping are combined
using a modulation operator

Codnx«— (Opsx)®(Tdux). 3)

In other words, the color of each pixel in the polygon's projection 7t(x)
is given by a blending operation of the pixel in the texture map 7 and
the interpolated shading of the polygon’s vertices.

3.2 Fragment Lighting

Fragment lighting is perhaps the most obvious way to implement
lighting. It simply extends the per-vertex lighting currently present in
graphics libraries to per-pixel computation. Fragment lighting thus
computes the shading of each pixel as it is rasterized

COnx«<pdsx)]

The shader parameters stored at each vertex are interpolated across the
pixels of the polygon's projection, and a procedure is called for each
pixel to synthesize the color of that pixel. Methods for Phong shading
in hardware [Bishop & Weimer, 1986],[Peercy et al., 1997] are based
on fragment lighting, as are a variety of procedural shaders, both
production [Hanrahan & Lawson, 1990] and realtime [Hart et al.,
1999].

Note that fragment lighting (4), which supports Phong shading
interpolation, is a permutation of (1), which supports Gouraud shading
interpolation. The juxtaposition of sampling d and shader evaluation p
suffices to change the representation from interpolating shader results
(color) with shader parameters (e.g. surface normals).

Fragment lighting applies the entire procedure to each pixel before
moving to the next. The main drawbacks to this technique is that
interpolated vectors, such as the surface normal, need to be
renormalized, which requires an expensive per-pixel square root
operation. If this renormalization is approximated or ignored, the
resulting artifacts can be incorrect shading, and this error increases with
the curvature of the surface the polygon approximates.

The second drawback is the amount of per-pixel computation versus
the amount of per-pixel time. Assuming a megapixel display and a 500
MIPS computer sustaining a 10 Hz frame rate limits procedures to 50
instructions. While a high-level VLIW instruction set could implement
most shaders in 50 instructions, this would be a wasteful investment of
resources since most shaders remain static, and the shader processor
continue to repeatedly synthesize the same texture albeit for different
pixels as the object moves across the screen.

The sampling rate of the d in the LHS of (4) (the resolution of the
polygon's projection) matches the sampling rate of the RHS (the
resolution of the polygon sampling the shader). Hence aliasing occurs
when this rate insufficiently samples the shader p. With the exception

of the obvious and expensive supersampling technique, procedural
shaders can be antialiased by bandlimiting [Norton, et al., 1982] and a
gradient magnitude technique [Rhoades, et al., 1992], [Hart et al.,
1999], both which modify the texture procedure p to only generate
signals properly sampled by the coordinates discretized by the 3.

3.3 Deferred Shading

Deferred shading [Molnar, 1992] implements procedural shading in
two phases. In the first phase

TOdnx«dsx 5)

such that the shading parameters are stored in a fat texture map 7 which
is the same resolution as the display, called the fat framebuffer. Once
all of the polygons have been scan converted, the second phase makes a
single shading pass through every pixel in the frame buffer

Cx,—pTx (6)

replacing the color with the results of the procedure applied to the
stored solid texture coordinates. In this matter, the application of p, the
shader, is deferred until all of the polygons have been projected, such
that the shader is only applied to visible sections of the polygons.

Deferred shading applies all of the operations of the shader expression
to a pixel before the next pixel is visited, and so suffers the same
process limitations as fragment lighting. Unlike fragment lighting,
deferred shading has a fixed number of pixels to visit, which provides a
constant execution speed regardless of scene complexity.

In fact, the main benefit of deferred shading is the reduction of its
shading depth complexity to one. This means a shader is evaluated only
once for each pixel, regardless of the number of overlapping objects
that project to that pixel. Since some shaders can be quite complex,
only applying them to visible pixel can save a significant amount of
rendering time.

The main drawbacks for deferred shading is the size of the fat
framebuffer 7. The fat framebuffer contains every variable used by the
shader, including surface normals, reflection vectors, and the
location/direction and color of each light source.

One possible offset to the large frame buffer is to generate the frame in
smaller chunks, trading space for time. It is not yet clear whether the
time savings due to deferred shading’s unit depth complexity makes up
for the multiple renderings necessary for this kind of implementation.

Antialiasing is another drawback of deferred shading since the
procedural texture is generated in a separate step of the algorithm than
the step where the samples have been recorded from the 8. Deferred
shading thus precludes the use of efficient polygon rasterization
antialiasing methods such as coverage masks. Unless a significant
amount of auxiliary information is also recorded, previous procedural
texturing antialiasing algorithms do not easily apply to deferred
shading.

11-3

However, with the multi-sample antialiasing found in many recent
graphics controllers, supersampling appears to be the antialiasing
technique of choice, and is certainly the most directly and generally
scalable antialiasing solution across all segments of the graphics
market. While the deferred shading frame buffer would have to be as
large as the sampling space, this still seems to be a feasible and
attractive direction for further pursuit.

Since all of the information needed by shader is held in the fat frame
buffer per pixel, the channels of the framebuffer would need to be
signed and generally of higher precision than the resulting color to
prevent error accumulation in complex shaders.

3.4 Environment Map Lighting

There are a variety of texture coordinate modes that implement useful
features. Recall that an environment map is an image of the incoming
luminance of a point in space.

Spheremap. Environment mapping is most commonly supported in
hardware by the spheremap mode. This texture coordinate generation
mode assigns a special projection of the reflection vector R component
of the shading information s to the texture coordinate u of the vertex x

ux < n*Rsx 7

This projection requires a per-vertex square root that is handled during
texture coordinate generation. The texture map consists of a mirror-ball
image of the surrounding environment, which is combined with
standard lighting by (3). This notation reveals how environment
mapping avoids the interpolation of normalized vectors, by instead
interpolating and sampling the projection of the reflection vector as a
texture coordinate. This inexact approximation can create artifacts on
large polygons spanning high-curvature areas.

Phong/Gloss Mapping. One problem with vertex lighting is that since
vertex colors are interpolated, specular highlights that peak inside
polygon faces do not get properly sampled. Specular highlights can be
simulated using (13) to generate an environment spheremap consisting
of a black sphere with specular highlights. This allows current graphics
API’s to support Phong highlights on polygon faces, using (7) for
texture coordinate generation and (3) for modulating texturing with
lighting. These highlights could be considered the incoming light from
a diffused area light source, thereby softening the appearance of real-
time shaded surfaces.

One significant advantage of the environment map is that it can contain
the incoming light information from any number of light sources.
Without it, we have a shading complexity that is linear in the number of
light sources, often requiring a separate pass/texture for each light
source. Putting all of the light source information into an environment
map reduces the complexity to constant in the number of light sources.

Environment Mapped Bump Mapping. Phong mapping can also be
used to approximate bump mapping

COdntx«To((ux)+ (T’ du’x)) ®)

where T’ is a bump map texture that, instead of a color, returns a 2-D
vector (the partial derivatives of the bump map height field) that offsets
the index into the environment map. Comparing EMBM (8) to standard
texture mapping (2) shows precisely where the perturbation occurs.
This form of bump mapping is supported by Direct3D 6.0, but requires
hardware support for the offsetting of texture indices by a texture result.
It would be interesting to investigate what other effects are possible by
offsetting a texture index with the result of another texture.

3.5 Multipass Rendering

Modern graphics API’s have limited resources that are often exhausted
implementing a single effect. Multipass algorithms render the scene
several times, combining a new effect with the existing result. Each
pass can include an additional shader element, including lighting
effects and texture layers. Each pass follows the form

Codnx«— (Cdnx)®(Sps x) (T du'x)) 9)

where the asterisk indicates operators that typically change for each
pass. The image composition operators of OpenGL 1.2.1 support a
variety of frame combination operators.

Multipass is a SIMD approach that distributes procedural operations
across the screen, applying a single operation to every screen pixel
before moving to the next operation in the shading expression.

The benefit of multipass rendering is its flexibity. Any number of
passes and combinations can be supported, and can be used to support
full-featured shading languages [Proudfoot, 1999], [Olano, et al.,
2000].

The drawback of multipass rendering is its execution time. Each pass
typically requires the re-rasterization of all of the geometry.
Furthermore, storage and combination of frame buffer images can be
incredibly slow. In many OpenGL implementations, it is faster to
display a one-polygon-per-pixel mesh texture mapped with an image
than to try to write the image directly to the screen.

Multipass rendering benefits from a retained (scene graph) mode since
the input object data rarely changes from pass to pass. If multipass is
used from a static viewpoint, then the polygons need only be rasterized
once, and each pass can be performed on screen space vertices (T X)
instead of model space vertices x, specifically

Cdx, < (Cdx) @ ((Sps x)® (T du" x)) (10)

Such a system would combine the benefits of deferred shading
(compare (5) and (6)) with multipass since the shading would be
deferred until after polygon projection. The shader would be executed
only on the polygons that survived clipping, but this includes more than
just the visible polygons.

As each new frame is composed with a previous frame, a low-pass
filter should remove high frequencies from the new frame before
composition. It is not yet clear what interference patterns could be
created when composing two images with energy at nearly the same

11-4

frequency. Some situations could cause a beating pattern at a lower,
more noticeable frequency.

As the results of the shading expression are accumulated in the frame
buffer, the precision of the frame buffer needs to be increased beyond
the final color output precision. To best accomodate a variety of
individual shading operations, the intermediate frame buffers need to
support signed values.

Accumulation Buffer. Perhaps the most obvious multipass technique
is the accumulation buffer

COdn' x« (COdT' x) ®(Bpsx) (11)

where 1" indicates that the projection is perturbed. This perturbation
supports antialiasing, motion blur, depth of field and, when combined
with a shadowing technique, soft shadows.

Shadow Mask. The multipass method for rendering shadows via the
shadow mask [Williams, 1978] is given by the following steps

COdnx<odpsx,
Codnx«dps’x,
C'on'x «dx,
aCx,« (zCxy)>zCn'n'xy),
Cx, ¢ (0 C x)*(C xg) + (1 — 00 C x)*(C” x,).

where s contains ambient lighting parameters and s’ contains diffuse
and specular. The superscript / indicates a frame buffer C' and
projection ' for the light source. The expression o C x, returns the
alpha channel of the frame buffer C at position x, and likewise the z
operator returns the depth channel. Analyzing the shadow mask
algorithm in this notation reveals several opportunities for special
hardware to support parallel operation and pass combination.

Shadow Volumes. Multipass techniques usually rely heavily on the
stencil buffer to either restrict the shader’s operations to a section of the
screen, or to store a temporary result of a shading operation. For
example, the shadow volume method can be expressed

COdnmx«dpsx,
sCOdnx« (COnXx)OR((zdnx")>(zCdmx’)),
COdnx«(sCdmx)?(@dps’ x).

In this example, the object vertices are denoted x and the shadow
volume vertices are x’. The operator s(C) returns the stencil buffer
value from the frame buffer C. The vector s contains ambient shading
parameters whereas s’ contains diffuse and specular parameters.

3.6 Multitexturing

Multitexturing allows different textures to be combined on a surface.
Multitexturing is a SIMD approach that distributes procedural
operations across data, performing a single operation on the entire
texture before moving to the next operation.

OpenGL 1.2.1 supports chained multitexturing
Conx < T>°0u’”’x @ (T”’0u”’x @ (T’du’x @ Toux)). (12)

where the @ symbol denotes one of the OpenGL texture modes, either
decal, modulate or blend. Direct3D appears to be extending these
modes to allow a larger variety of texture expressions.

Multitexturing avoids the antialiasing roadblocks encountered by
deferred shading because multitexturing defers the shading to the
texture map, then projects the result onto the screen. This sets up the
opportunity for shading aliases, which are more tolerable, without
affecting rasterization aliases, which are more distracting.

Antialiasing in a multitexturing system could be accomplished by
antialiasing each of the component textures. MIP mapping of
multitexture components is one method used to filter the texture
components.

Since the textures are used as components to shading equations, higher
precision texture maps are needed to accumulate intermediate results,
especially if scales greater than one are allowed. Signed texture values
are also necessary.

3.7 Texture Shading

Texture shading stores shading information in the texture coordinates
and maps. In its simplest form, it is expressed as

Tdu<psdu (13)

where the texture coordinate vector u indexes local illumination and
texturing information s, and p applies a shader to this information,
storing the resulting color in the texture map. The texture map is then
applied to the surface using (2), which now takes responsibility for both
texturing and lighting [Kautz & McCool, 1999] . Such techniques
require special texture generation modes such that the texture
coordinates contain a portion of the shader expression. These methods
are demonstrated in Section 4.

Fat Texture Map. Texture shading occurs on a surface, which is
parameterized by a two-dimensional coordinate system. A fat texture
map could be considered that stores a vector of shading parameter
instead of simply colors

Codnx«<pTdux. 14)

The parameters stored in the fat texture map might include vectors such
as surface normals and tangents, or cosines such as the dot product of
the surface normal and the light direction. This model of texture

11-5

shading is similar to deferred shading, replacing the fat frame buffer
with a fat texture map.

Incorporating texture shading into multitexturing replaces the fat
texture map with a collection of standard-sized texture maps each
containing a sub-expression result of a complex shader expression.
McCool proposed a multitexturing algebra based on a stack machine,
allowing more complex texture expressions. McCool’s proposal for dot
products overlooks the sines of the angles between vectors, which
could be useful for rendering hair.

It is interesting that the linear interpolation across the polygon
interpolates the indices across the parameter vectors stored in texture
memory. This allows the interpolation of normals and other shading
parameters to be precomputed, such that only the index u need be
interpolated [Kilgard, 1999].

Solid Mapping. Texture shading was used to perform solid texturing in
OpenGL without any extensions [Carr, et al., 2000]. The technique
assumed that the mapping u: x—u is one-to-one (such that images of
the object’s polygons do not overlap in the texture map 7). The object’s
polygons are rasterized into the texture map

TOdux <« dsx, (15)

where the shading parameters, in this case the solid texture coordinates
(s,,7), are stored as a color {R=s; G=t; B=r} in the texture map T.
A second pass

Tdu«<pTdu (16)

replaces the texture map contents (s,t,r) with a color (R,G,B) generated
by the procedural shader p on the solid texture coordinates. The texture
map now contains a procedural solid texture that can be mapped back
onto the object using standard texture mapping (2).

4 Applications

In the previous section, we followed a natural progression of techniques
to support the real-time implementation of advanced shading models.
This progression concluded with texture shading, which, when
supported by multitexturing and multipass rendering, provides a
powerful tool for implementing advanced shaders, though the full
power of this tool is not yet completely understood. We explore the
capabilities of texture shading by considering the implementation of a
variety of advanced shaders.

These advanced shaders require more information than the standard
surface normal and reflection vector currently available. This
information can be encoded as dot products, as recommended by
[McCool & Heidrich, 1999]. The coordinates and vectors used by these
shaders are enumerated in Figure 3.

u the point on the surface whose illumination properties we are
interested in;

N the unit surface normal perpendicular to the tangent plane of
the surface at u;

T principal tangent vector used to fix the orientation of the
coordinate frame at u for anisotropic shading;

L a light-dependent unit light vector anchored at u in the
direction of one of possibly many light sources;

V' the view-dependent unit view vector anchored at u in the
direction of the viewer;

R the light-dependent unit light reflection vector equal to
2(N -L)N-L;

H the light- and view-dependent unit halfway vector equal to L+V
normalized (constant for orthographic projection and
directional light sources);

Figure 3: Shading parameters.

One method for implementing advanced shaders is to precompute its
results for all possible inputs. We consider the equivalence classes of
the reflectance function of a surface p(u,v,6;,¢;,6,,¢,) where u,v denotes
a point on the surface, 6;,¢; are the elevation and azimuth of a light
vector L on this point, and 6,,¢, are the elevation and azimuth of the
viewing direction V. (We use the term BRDF although many shaders
are not actually bidirectional [Lewis, 1994]). We will denote
equivalence classes by replacing parameters of the plenoptic function
with the symbol -, as shown in Figure 4.

p (6,616, BRDF
P (0 6i000) Diffuse, e.g. Lambert’s law

p (,6:,,6,,) Isotropic, e.g. N-L, N-V

p (4, 6,0+.,6,¢+) Specular, e.g. N-L, N-V, V'-R

P (5 6:,0,5) Anisotropic diffuse, e.g. N-L, T-L
p (U,) Texturing

p (u,v,0;,,,) Diffuse bump mapping

p (u.v,6:,¢+,6,,¢+) Specular bump mapping

Figure 4: Equivalence classes of reflectance
functions.

We investigate the various advanced texturing and shading techniques
within these equivalence classes and use the classes to determine if
precomputation and storage is feasible within the implementation
technique.

[Cabral et al., 1999] showed how a general BRDF could be applied
through the environment spheremap by assigning to it the reflected
luminance instead of the incident luminance. While a technique for
interpolating these luminance maps was described, this technique relies
on a large number of environment maps discretized over the possible
view positions.

11-6

Figure 5: Cook-Torrance.

. W

Figure 7: Hair.

Figure 6: Skin.

e £ M
NA L
N,
NASSY 4

Figure 8: Fake Fur.

Companies such as nVidia have announced interest and support in 3-D
texture maps, they are not currently available in an efficient form
through current graphics API’s. A 3-D texture map would be capable
of storing reflectance information for specular reflectance and even
diffuse bump mapping.

The advanced shaders we investigated typically use at least four
distinct values as their parameters, which precludes the use of a texture
map to lookup precomputed results. However, these advanced shaders
are created from separable 2-D reflectance functions that can be
combined to form the final multidimensional shader. [Kautz &
McCool, 1999] decomposed 4-D BRDEF’s into a sequence of separable
functions of 2-D reflectance functions. Basing the separability of
shaders on the model instead of a general decomposition has the added
benefit of supporting parameterization of the model, requiring
recomputation of only the component whose parameter has changed, or
even the real-time control of the blending operations between the
individual lookup textures.

4.1 Cook-Torrance

The Torrance-Sparrow local illumination model is a highly empirical
physically based method that is both experimentally and physically
justified. The most common implementation of the Torrance-Sparrow
model is the Cook-Torrance approximation [Cook & Torrance, 1982]
of the specular component

p=—1DG . (17)
(N-V)N-L)
The Fresnel effect is the total reflection of light glancing off of a

surface at an angle shallower than the critical angle, which is modeled
as

polE=0'(| ero-1y (18)
2(g+o’ (cg—o)+)

where ¢ = V-H and g*=n*+c*-1. Computed directly, the divisions and
square root would be costly, though feasible, for direct hardware
implementation of this term. Alternatively, an approximation or a two-
dimensional lookup table indexed by g and ¢ would also suffice. The
constants for the Frenel term vary with wavelength, so separate F' terms
can be computed for each color channel, resulting in a highlight that
changes hue with intensity. The Frenel effect is plotted in the second
row of Figure 5.

The roughness term is a distribution of the orientation of the
microfacets, which is typically modeled by the Beckmann distribution
function,

RGN
4m*(N-H) m (N -H)

11-7

parameterized by the surface roughness m. The Beckmann distribution
function for m=0.6 is plotted in the fourth row of Figure 5. This could
be implemented with a 2-D texture map parameterized by N-H and m,
which would also allow the roughness to vary across a surface.

The geometric attenuation factor G accounts for self-shadowing

G:mm{l,Z(N‘H)(N.V),Z(N‘H)(N~L)} (20)
V-H V-H

as the smaller of one, the inverse of the percentage of blocked incident
light, and the inverse of the percentage of blocked reflected light, and
is demonstrated in the third row of Figure 5. The geometry term
consists of four cosines N-H, V-H, N-V and N-L. However, the
implementation can be separated into the product of two texture maps.
A base 2-D texture map of 2(N-H)/(V-H), modulated by a 1-D texture
maps containing either N-V or N-L. (If the API supports scaling by the
texture coordinate, these 1-D texture maps could be eliminated.)

Note that the full Cook-Torrance implementation, shown in the first
row of Figure 5, requires four cosines N-H, N-L, V-H, and V-L.
Precomputation and storage of the lighting model would result in a
four-dimensional table equivalent to the BRDF. Hence, programmable
shading remains a more efficient implementation for this lighting
model.

4.2 Multilayer Shaders

Multilayer shaders decompose reflected light into a surface scattered
component and a sub-surface scattered component at each layer. There
many applications of multilayer shaders, including materials such as
skin, leaves, tree canopies and shallow ponds.

Whereas Lambertian reflection is constructed from geometric
principles, Seeliger’s model [Hanrahan & Krueger, 1993] is
constructed from first principles in physics as

N-L (21)

P=ND+N 7

It scatters light more uniformly than Lambert’s law, providing a softer
appearance similar to skin. Compare the fourth row (Lambertian) with
the third row (Seeliger) of Figure 6. This lighting model is isotropic
(but not bidirectional). It could be precomputed using a two-
dimensional texture map indexed by the cosines N-L and N-V, or even
by arithmetic on two texture coordinates.

The Henyey-Greenstein function was used to model the scattering of
light by particles in a given layer

) 1 l-¢g (22)

L-V)y=—
P dr (1+g° -2gL- V)"’

which is parameterized by the mean cosine of the direction of scattering
g. This scattering function is plotted as intensity in the second row of
Figure 6.

The scattering function was used as a probability distribution function
for the Monte Carlo model that constructed a full BRDF by sampling a
hemisphere of incoming light and measuring the exiting light on the
same hemisphere. However, the Henyey-Greenstein function could also
be used as an opacity function for texture layers, as demonstrated in the
first row of Figure 6. As such, it can be implemented as a 2-D texture
indexed by the cosine L-V and the scattering parameter g. One possible
improvement is to implement the Henyey-Greenstein scattering using
the EMBM enhancement (8).

Alternatively, the entire skin reflection function could be implemented
as a 3-D specular BRDF, indexed by N-L, N-V and L-V.

4.3 Anisotropic Shaders

Anisotropic lighting models require a grain tangent direction in the
reflectance coordinate frame, and must also account for self-
shadowing. The most common use for anisotropic reflection is in the
simulation of hair and fur, but can also be used for brushed metals and
grassy fields.

A BRDF for hair was modeled [Kajiya & Kay, 1989] with a diffuse
component given by the sine of the angle between the hair direction
and the light vector

py =sin(T,L) = /1-(T-L)? (23)

and the specular component as the sum of the products of the sines and
cosines of the angle between the hair direction and the light vector and
the view vector, raised to a specular exponent

p. = ((T-L)(T-V)+\/1—(T-L)2\/1—(T-V)2)"- (24)

Figure 7 shows these shading models. The fourth row is diffuse. The
third row is specular with exponent one and the second row is specular
with exponent 8. Note that the tangent dot products may be negative,
such that raising to an even power changes the sign. The diffuse and
specular components are combined in the first row.

The diffuse reflection can be implemented with as a 1-D texture map,
indexed by T-L. (The cosine-to-sine conversion is so fundamental that
perhaps it bears hardware implementation.) The specular reflection
function can be implemented as a 2-D texture map, indexed by 7-L and
T-V. Alternatively, for directional light and orthographic views, this can
be implemented using the tangent vector T as the texture coordinate,
and using a texture transformation matrix whose first row is L and
second row is V' [Heidrich & Seidel, 1998].

This model was further enhanced for efficient use in the entertainment
industry [Goldman, 1997]. The scattering of light by hair and fur is
approximated by

_IxD) (IxV) (25)
P k]

11-8

the cosine of the dihedral angle between the hair-light plane and the
hair-view plane. Compare the fourth row of Figure 8, which contains
the diffuse and specular terms, with the third row, which plots the
scattering function.

An opacity function for hair is given by an inverted Gaussian

—kf1-(7 1)] (26)

(x(V):l—exp[N

where £ is a constant equal to the projected area of each strand of hair
times the number of hair strands, both per unit square. This opacity
function is plotted (for £=0.1) as intensity in the second row of Figure
8. These terms are collected to form a general reflectance model for
hair

1+ 1-
Pras = a(V)(l—sa(L))[T” k+—Ek](k{,p(, +hp,) @7

which combines constants of reflection k. and transmission k;
(backlighting), and diffuse k, and specular k; reflection. The fraction s
is used to control the degree of self-shadowing of hair. This expression
can be implemented as a multipass rendering, or a multitexturing if the
API supports the operations. This result is demonstrated in the first row
of Figure 8.

4.4 Non-Photorealistic Shaders

While photorealism has been a longstanding goal of computer graphics,
a significant amount of attention has also been paid to the use of
graphics for illustration and visualization. The fundamental problem in
non-photorealistic rendering is silhouette detection. The silhouette of an
object occurs where the surface normal is perpendicular to the view
vector, which could be indicated by the reflectance

p=1<1-V-Ny' (28)
where the exponent » indicates the crispness of the silhouette.

Shading in illustrations is often performed by hash marks, which often
follow the tangent directions of the surface, and hardware shaders
based on this form of shading would need the tangent vectors in
addition to the surface normal to properly orient a prestored or
synthesized hash texture. One could implement such hashing using a
hashed spheremap.

5 Conclusion

We tackled the problem of analyzing present shader technology. We
introduced a grammar capable of representing the fundamental nature
of and differences between real-time shading techniques. We used this
grammar to compare features of the standard pipeline with deferred
rendering, multipass, multitexturing, texture shading and environment
map techniques. We also evaluated these techniques with respect to a
variety of advanced shaders.

We found that the natural progression of the real-time shader
techniques leads to texture shading supported by multitexturing and
multipass. We also found that storage of the BRDF is inefficient, and
advanced shading procedures are too complex to implement directly,
but they can however be assembled by multitexture components that
consist of 2-D texture maps indexed by coordinates generated from dot
products of shader vector variables.

5.1 Future Work

Analyzing real-time shading pipelines using the grammar provides a
basis for innovation, and makes various commutations easier to
consider. We expect this comparison may inspire new techniques based
on innovative permutations of the parameterization, shader, projection
and interpolation operations.

We also expect the grammar to grow more specific, providing a more
detailed view of the specific channels and coordinates used for various
shading effects.

Due to the constraints of time, we have omitted bump mapping,
procedural texturing and the noise function from this discussion. Half
of procedural shading is procedural texturing, though most of the
attention on advanced shading has focused on lighting and local
illumination models.

5.2 Acknowledgments

This work was supported in full by a consulting contract through the
Evans & Sutherland Computer Corp. Conversations with Kurt Akeley,
John Buchanan, Nate Carr, Rich Ehlers, Alain Fournier, Eric Haines,
Pat Hanrahan, Chuck Hansen, Masaki Kameya, Michael McCool,
Marc Olano and Steve Tibbitts were very useful in uncovering the
details of many of these real-time shading techniques.

Bibliography

[Banks, 1994] D. C. Banks. Illumination in Diverse Codimensions.
Computer Graphics (Proceedings of SIGGRAPH '94), 1994, pp.
327-334.

[Bishop & Weimer, 1986] Gary Bishop and David M. Weimer. Fast
Phong Shading, Computer Graphics 20(4), (Proceedings of
SIGGRAPH 86), Aug. 1986, pp. 103-106.

[Cabral et al., 1999] Brian Cabral and Marc Olano and Philip
Nemec. Reflection Space Image Based Rendering, Proceedings of
SIGGRAPH 99, Computer Graphics Proceedings, Annual
Conference Series, Aug. 1999, pp. 165-170.

[Carr, et al., 2000] Nate Carr, John Hart and Jerome Maillot. The Solid
Map: Methods for Generating a 2-D Texture Map for Solid
Texturing. Proc. Western Computer Graphics Symposium, Mar.
2000.

[Cook & Torrance, 1982] R. L. Cook and K. E. Torrance. A
Reflectance Model for Computer Graphics, ACM Transactions on
Graphics, 1 (1), January 1982, pp. 7-24.

11-9

[Crow, 1984] Franklin C. Crow. Summed-area Tables for Texture
Mapping, Computer Graphics 18(3), (Proceedings of SIGGRAPH
84), July 1984, pp. 207-212.

[Goldman, 1997] Dan B. Goldman. Fake Fur Rendering, Proceedings
of SIGGRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, Aug. 1997, pp. 127-134.

[Hanrahan & Lawson, 1990] Pat Hanrahan and Jim Lawson. A
Language for Shading and Lighting Calculations, Computer
Graphics 24(4), (Proceedings of SIGGRAPH 90), Aug. 1990, pp.
289-298.

[Hanrahan & Krueger, 1993] Pat Hanrahan and Wolfgang Krueger.
Reflection from Layered Surfaces Due to Subsurface Scattering,
Proceedings of SIGGRAPH 93, Aug. 1993, pp. 165-174.

[Hanrahan, 1999] Patrick Hanrahan. Real Time Shading Languages.
Keynote, Eurographics/SIGGRAPH Workshop on Graphics
Hardware, Aug. 1999

[Hart et al., 1999] John C. Hart, Nate Carr, Masaki Kameya, Stephen
A. Tibbitts and Terrance J. Coleman. Antialiased parameterized
solid texturing simplified for consumer-level hardware
implementation, 1999 SIGGRAPH/Eurographics Workshop on
Graphics Hardware, Aug., 1999, pp. 45-53.

[Heckbert, 1990] Paul S. Heckbert. Adaptive Radiosity Textures for
Bidirectional Ray Tracing, Computer Graphics (Proceedings of
SIGGRAPH 90), 24 (4), August 1990, pp. 145-154

[Heidrich & Seidel, 1998] W. Heidrich and H.-P. Seidel. Efficient
Rendering of Anisotropic Surfaces Using Computer Graphics
Hardware. Image and Multi-dimensional Digital Signal
Processing Workshop (IMDSP) 1998.

[Kajiya & Kay, 1989] James T. Kajiya and Timothy L. Kay. Rendering
Fur with Three Dimensional Textures, Computer Graphics
(Proceedings of SIGGRAPH 89), 23 (3), July 1989, pp. 271-280.

[Kajiya, 1985] James T. Kajiya. Anisotropic Reflection
Models, Computer Graphics (Proceedings of SIGGRAPH 85), 19
(3), July 1985, pp. 15-21.

[Kajiya, 1986] James T. Kajiya. The Rendering Equation, Computer
Graphics (Proceedings of SIGGRAPH 86), 20(4), August 1986,
pp. 143-150.

[Kautz & McCool, 1999] Jan Kautz and Michael D. McCool.
Interactive Rendering with Arbitrary BRDFs using Separable
Approximations, Eurographics Rendering Workshop 1999, June
1999.

[Kilgard, 1999] Mark J. Kilgard. A Practical and Robust Bump-
mapping Technique for Today’s GPUs. nVidia Technical Report.
Feb. 2000.

[Lastra et al., 1995] Anselmo Lastra and Steven Molnar and Marc
Olano and Yulan Wang. Real-Time Programmable Shading, 1995
Symposium on Interactive 3D Graphics, April 1995, pp. 59-66.

[Lewis, 1994] R. R. Lewis. Making Shaders More Physically
Plausible, Computer Graphics Forum, /3 (2), January 1994, pp.
109-120.

[Norton, et al., 1982] Norton, Alan, Alyn P. Rockwood and Phillip T.
Skolmoski. Clamping: A method for antialiased textured surfaces
by bandwidth limiting in object space. Computer Graphics 16(3),
(Proc. SIGGRAPH 82), July 1982, pp. 1-8.

[McCool & Heidrich, 1999] Michael D.McCool and Wolfgang
Heidrich. Texture shaders, 1999 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, August 1999, pp. 117-126.

[Molnar, 1992] Steven Molnar and John Eyles and John
Poulton. PixelFlow: High-speed rendering using image
composition, Computer Graphics (Proceedings of SIGGRAPH
92), 26 (2), July 1992, pp. 231-240.

[Olano & Lastra, 1998] Marc Olano and Anselmo Lastra. A Shading
Language on Graphics Hardware: The PixelFlow Shading
System, Proceedings of SIGGRAPH 98, Computer Graphics
Proceedings, Annual Conference Series, July 1998, pp. 159-168.

[Olano, et al., 2000] Marc Olano, et al., Interactive Multi-Pass
Programmable Shading. To appear: Proc. SIGGRAPH
2000.

[Peercy et al., 1997] Mark Peercy and John Airey and Brian Cabral.
Efficient Bump Mapping Hardware, Proceedings of SIGGRAPH
97, Computer Graphics Proceedings, Annual Conference Series,
Aug. 1997, pp. 303-306.

[Proudfoot, 1999] Kekoa Proudfoot. Real Time Shading Language
Description, Version 4. Nov. 1999.

[Rhoades, et al., 1992] Rhoades, John, Greg Turk, Andrew Bellm
Andrei State, Ulrich Neumann and Amitabh Varshney. Real-Time
Procedural Textures. Proc. Interactive 3-D Graphics Workshop,
1992. pp. 95-100.

[Stalling & Zockler, 1997] D. Stalling and M. Zéckler and H.-C. Hege
Fast Display of Illuminated Field Lines. IEEE Transactions on
Visualization and Computer Graphics, 3(2), 1997, pp. 118-128.

[Williams, 1978] Lance Williams. Casting Curved Shadows on Curved
Surfaces, Computer Graphics (Proceedings of SIGGRAPH
78), 12(3), Aug. 1978, pp. 270-274.

[Williams, 1983] Lance Williams. Pyramidal Parametrics, Computer
Graphics (Proceedings of SIGGRAPH 83), 17 (3), July 1983, pp.
1-11.

11-10

Chapter 12
Bibliography

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]

(8]

(9]
(10]
(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]
[24]

ANDREWS, H., AND HUNT. Digital Image Restoration. The Johns Hopkins University Press, 1977.
APODACA, A. A., AND GRITZ, L. Advanced RenderMan: Creating CGI for motion pictures. Morgan Kaufmann, 2000.

ASHIKHMIN, M., PREMOZE, S., AND SHIRLEY, P. A Microfacet-Based BRDF Generator. In Proc. ACM SIGGRAPH
(July 2000), pp. 65-74.

ATI. Pixel Shader Extension, 2000. Specification document, available from http://www.ati.com/online/sdk.
ATI. Vertex Shader Extension, 2001. Specification document, available from http://www.ati.com/online/sdk.
BANKS, D. Illumination in Diverse Codimensions. In Proc. SIGGRAPH (July 1994), pp. 327-334.

BAsTOS, R., HOFF, K., WYNN, W., AND LASTRA, A. Increased Photorealism for Interactive Architectural Walk-
throughs. 1999 ACM Symposium on Interactive 3D Graphics (April 1999), 183—-190.

BERGERON, P. Shadow Volumes for Non-Planar Polygons. In Proc. Graphics Interface (May 1985), pp. 417-418.
Extended abstract.

BERGERON, P. A General Version of Crow’s Shadow Volumes. IEEE CG&A 6, 9 (Sept. 1986), 17-28.
BLINN, J. Me and my (fake) shadow. IEEE CG&A 8, 1 (Jan. 1988), 82—-86.

BLINN, J. F. Models of light reflection for computer synthesized pictures. In Computer Graphics (SIGGRAPH ’77
Proceedings) (July 1977), pp. 192-198.

BLINN, J. F. Simulation of wrinkled surfaces. In Computer Graphics (SIGGRAPH ’78 Proceedings) (Aug. 1978),
pp- 286-292.

BLINN, J. F., AND NEWELL, M. E. Texture and reflection in computer generated images. Communications of the ACM
19 (1976), 542-546.

BLYTHE, D., GRANTHAM, B., AND KILGARD, M. J. Lighting and shading techniques for interactive applications. In
SIGGRAPH 1999 Course Notes (Aug. 1999).

BLYTHE, D., GRANTHAM, B., KILGARD, M. J., MCREYNOLDS, T., AND NELSON, S. R. Advanced graphics
programming techniques using OpenGL. In SIGGRAPH 1999 Course Notes (Aug. 1999).

BOLIN, M. R., AND MEYER, G. W. A Perceptually Based Adaptive Sampling Algorithm. In Proc. ACM SIGGRAPH
(July 1998), pp. 299-310.

BROTMAN, L., AND BADLER, N. Generating Soft Shadows with a Depth Buffer Algorithm. IEEE CG&A 4, 10 (Oct.
1984), 71-81.

CABRAL, B., MAX, N., AND SPRINGMEYER, R. Bidirectional Reflection Functions From Surface Bump Maps. In
Proc. SIGGRAPH (July 1987), pp. 273-281.

CABRAL, B., OLANO, M., AND NEMEC, P. Reflection space image based rendering. In Computer Graphics (SIG-
GRAPH 99 Proceedings) (Aug. 1999), pp. 165-170.

CHIN, N., AND FEINER, S. Near Real-Time Shadow Generation Using BSP Trees. In Proc. SIGGRAPH (Aug. 1989),
vol. 23, pp. 99-106.

CHRYSANTHOU, Y., AND SLATER, M. Shadow Volume BSP Trees for Computation of Shadows in Dynamic Scenes.
In SIGGRAPH Symp. on Interactive 3D Graphics (Apr. 1995), pp. 45-50.

COHEN, M., AND WALLACE, J. Radiosity and Realistic Image Synthesis. Academic Press, 1993.
CoOK, R. L. Shade Trees. In Proc. SSIGGRAPH (July 1984), pp. 223-231.
Crow, F. Shadow Algorithms for Computer Graphics. In Proc. SIGGRAPH (July 1977), vol. 11, pp. 242-248.

12-1

[25] DANA, K. J., GINNEKEN, B. V., NAYAR, S. K., AND KOENDERINK, J. J. Columbia-Utrecht Reflectance and Texture
Database. http://www.cs.columbia.edu/CAVE/curet/, 1999.

[26] DEBEVEC, P. E. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global
illumination and high dynamic range photography. In Computer Graphics (SIGGRAPH ’98 Proceedings) (July 1998),
pp. 189-198.

[27] DEBEVEC, P. E., AND MALIK, J. Recovering high dynamic range radiance maps from photographs. In Computer
Graphics (SIGGRAPH ’97 Proceedings) (Aug. 1997), pp. 369-378.

[28] DEYOUNG, J., AND FOURNIER, A. Properties of Tabulated Bidirectional Reflectance Distribution Functions. In Proc.
Graphics Interface (May 1997), pp. 47-55.

[29] DIEFENBACH, P. Pipeline Rendering: Interaction and Realism throught Hardware-Based Multi-pass Rendering. PhD
thesis, Department of Computer and Information Science, 1996.

[30] DIEFENBACH, P., AND BADLER, N. Pipeline Rendering: Interactive refractions, reflections and shadows. Displays:
Special Issue on Interactive Computer Graphics 15, 3 (1994), 173-180.

[31] DIEFENBACH, P., AND BADLER, N. Multi-Pass Pipeline Rendering: Realism For Dynamic Environments . 1997 ACM
Symposium on Interactive 3D Graphics (April 1997), 59-70.

[32] DuUFF, T. Interval arithmetic and recursive subdivision for implicit functions and constructive solid geometry. In Proc.
ACM SIGGRAPH (July 1992), pp. 131-138.

[33] EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WORLEY, S. Texturing and Modeling, second ed.
Academic Press, 1998.

[34] ENGLER, D. R. VCODE: A Retargetable, Extensible, Very Fast Dynamic Code Generation System. In Proc. ACM
SIGPLAN (1996), pp. 160-170.

[35] ERNST, I., RUSSELER, H., SCHULZ, H., AND WITTIG, O. Gouraud bump mapping. In Eurographics/SIGGRAPH
Workshop on Graphics Hardware (1998), pp. 47-54.

[36] FOURNIER, A. Separating reflection functions for linear radiosity. In Eurographics Rendering Workshop (June 1995),
pp- 383-392.

[37] FREEMAN, W., AND ADELSON, E. The Design and Use of Steerable Filters. IEEE Transaction on Pattern Analysis
and Machine Intelligence 13,9 (Sept. 1991), 891-906.

[38] FucHs, H., GOLDFEATHER, J., HULTQUIST, J., SPACH, S., AUSTIN, J., BROOKS, JR., F., EYLES, J., AND POUL-
TON, J. Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes. In Proc. SIG-
GRAPH (July 1985), vol. 19, pp. 111-120.

[39] GoLuB, G., AND VAN LOAN, C. Matrix Computations. The Johns Hopkins University Press, Baltimore, Maryland,
1983.

[40] GONDEK, J., MEYER, G., AND NEWMAN, J. Wavelength Dependent Reflectance Functions. In Proc. ACM SIGGRAPH
(July 1994), pp. 213-220.

[41] GoocCH, B., SLOAN, P.-P., GOOCH, A., SHIRLEY, P., AND RIESENFELD, R. Interactive technical illustration. In ACM
Symposium on Interactive 3D Graphics (1999), pp. 31-38.

[42] GORTLER, S., GRZESZCZUK, R., SZELINSKI, R., AND COHEN, M. The Lumigraph. In Proc. SIGGRAPH (Aug.
1996), pp. 43-54.

[43] GREENE, N. Applications of World Projections. In Proceedings of Graphics Interface 86 (May 1986), pp. 108—114.

[44] GriTz, L., AND HAHN, J. BMRT: A Global Illumination Implementation of the RenderMan Standard. Journal of
Graphics Tools 1, 3 (1996), 29-47.

[45] GUENTER, B., KNOBLOCK, T., AND RUF, E. Specializing shaders. In Proc. SIGGRAPH (Aug. 1995), pp. 343-350.

122

[46]

[47]

(48]
[49]
(50]

(51]
[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]
[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

HAEBERLI, P., AND AKELEY, K. The accumulation buffer: Hardware support for high-quality rendering. In Proc.
SIGGRAPH (Aug. 1990), pp. 309-318.

HAEBERLI, P., AND SEGAL, M. Texture mapping as a fundamental drawing primitive. In Fourth Eurographics Work-
shop on Rendering (June 1993), pp. 259-266.

HALL, R. lllumination and Color in Computer Generated Imagery. Springer-Verlag, New York, 1989.
HANRAHAN, P. Radiosity and Realistic Image Synthesis. Academic Press, 1993, ch. Rendering Concepts.

HANRAHAN, P., AND LAWSON, J. A language for shading and lighting calculations. In Computer Graphics (SIG-
GRAPH ’90 Proceedings) (Aug. 1990), pp. 289-298.

HANSEN, P. Introducing pixel texture. In Developer News. Silicon Graphics Inc., May 1997, pp. 23-26.

HE, X., TORRANCE, K., SILLION, F., AND GREENBERG, D. A comprehensive physical model for light reflection. In
Proc. SIGGRAPH (July 1991), pp. 175-186.

HEIDRICH, W. High-quality Shading and Lighting for Hardware-accelerated Rendering. PhD thesis, Universitit
Erlangen-Niirnberg, 1999.

HEIDRICH, W., KAUTZ, J., SLUSALLEK, P., AND SEIDEL, H.-P. Canned lightsources. In Rendering Techniques 98
(Proceedings of Eurographics Rendering Workshop) (1998).

HEIDRICH, W., AND SEIDEL, H. Efficient Rendering of Anisotropic Surfaces Using Computer Graphics Hardware. In
Image and Multi-dimensional DSP Workshop (IMDSP) (1998).

HEIDRICH, W., AND SEIDEL, H.-P. View-independent environment maps. In Eurographics/SIGGRAPH Workshop on
Graphics Hardware (1998), pp. 39-45.

HEIDRICH, W., AND SEIDEL, H.-P. Realistic, hardware-accelerated shading and lighting. In Computer Graphics
(SIGGRAPH 99 Proceedings) (Aug. 1999).

HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P. An image-based model for realistic lens systems in interactive
computer graphics. In Graphics Interface '97 (1997), pp. 68-75.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. Applications of pixel textures in visualization and
realistic image synthesis. In ACM Symposium on Interactive 3D Graphics (1999). Accepted for publication.

INC., S. G. Pixel Texture Extension, Dec. 1996. Specification document, available from http://www.opengl.org.

JENSEN, H., AND CHRISTENSEN, P. Efficient Simulation of Light Transport in Scenes with Participating Media using
Photon Maps. In Proc. ACM SIGGRAPH (July 1998), pp. 311-320.

KAI1YA, J. T. The rendering equation. In Computer Graphics (SIGGRAPH ’86 Proceedings) (Aug. 1986), pp. 143—-150.

KAuTz, J. Hardware Rendering with Bidirectional Reflectances. Tech. Rep. TR-99-02, Dept. Comp. Sci., U. of Water-
loo, 1999.

KAUTZ, J. Interactive Reflections with Arbitrary BRDFs. Tech. Rep. TR-99-XX, Dept. Comp. Sci., U. of Waterloo,
1999.

KAUTZ, J., AND MCCoOOL, M. Interactive Rendering with Arbitrary BRDFs using Separable Approximations. In Tenth
Eurographics Workshop on Rendering (June 1999), pp. 281-292.

KAUTZ, J., AND McCooL, M. D. Interactive Rendering with Arbitrary BRDFs using Separable Approximations. In
Eurographics Rendering Workshop (June 1999).

KaAuTz, J., AND McCooL, M. D. Approximation of Glossy Reflection with Prefiltered Environment Maps. In Proc.
Graphics Interface (May 2000), pp. 119-126.

KAuUTZ, J., VAZQUEZ, P.-P., HEIDRICH, W., AND SEIDEL, H.-P. Unified approach to prefiltered environment maps.
In submitted (2000).

12-3

[69]
[70]
(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]
(80]
[81]

[82]

[83]

[84]
[85]
[86]
[87]

[88]
[89]

[90]

[91]

[92]

KELLER, A. Instant Radiosity. In Proc. SIGGRAPH (Aug. 1997), pp. 49-56.
KILGARD, M. OpenGL-based Real-Time Shadows. http://reality.sgi.com/mjk_asd/tips/rts/, 1997.

KILGARD, M. J. Realizing OpenGL: Two implementations of one architecture. In Eurographics/SIGGRAPH Workshop
on Graphics Hardware (1997).

KILGARD, M. J. A practical and robust bump-mapping technique for today’s GPU’s. Tech. rep., NVIDIA Corp., Feb.
2000. Available at http://www.nvidia.com/.

KOENDERINK, J., VAN DOORN, A., AND STAVRIDI, M. Bidirectional Reflection Distribution Function Expressed in
Terms of Surface Scattering Modes. In European Conference on Computer Vision (1996), pp. 28-39.

LAFORTUNE, E., FooO, S.-C., TORRANCE, K., AND GREENBERG, D. Non-linear approximation of reflectance func-
tions. In Proc. SIGGRAPH (Aug. 1997), pp. 117-126.

LAFORTUNE, E., AND WILLEMS, Y. Using the modified Phong reflectance model for physically based rendering. Tech.
Rep. CW197, Dept. Comp. Sci., K.U. Leuven, 1994.

LARSON, G. W., RUSHMEIER, H., AND PIATKO, C. A Visibility Matching Tone Reproduction Operator for High Dyn
amic Range Scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4 (Oct.—Dec. 1997), 291-306.

LASTRA, A., MOLNAR, S., OLANO, M., AND WANG, Y. Real-time programmable shading. 7995 Symposium on
Interactive 3D Graphics (April 1995), 59-66. ISBN 0-89791-736-7.

LENGYEL, J. E. Real-Time Fur. In Rendering Techniques '00 (Proc. Eurographics Workshop on Rendering) (2000),
Springer, pp. 243-256.

LEVOY, M., AND HANRAHAN, P. Light field rendering. In Proc. SIGGRAPH (Aug. 1996), pp. 31-42.
LEWIS, R. Making shaders more physically plausible. In Eurographics Workshop on Rendering (June 1993), pp. 47-62.

LINDHOLM, E., KILGARD, M., AND MORETON, H. A User-Programmable Vertex Engine. In Proc. ACM SIGGRAPH
(Aug. 2001).

LISCHINSKI, D., AND RAPPOPORT, A. Image-Based Rendering for Non-Diffuse Synthetic Scenes. Nineth Eurograph-
ics Workshop on Rendering (June 1998), 301-314.

LiTWINOWICZ, P. Processing images and video for an impressionistic effect. In Proc. SIGGRAPH (Aug. 1997),
pp- 407-414.

Loxkovic, T., AND VEACH, E. Deep Shadow Maps. In Proc. ACM SIGGRAPH (July 2000), pp. 385-392.
LozAaNoO, R., ET AL. Colorimetry. Tech. Rep. 15.2, Commision internationale de 1’éclairage (CIE), 1986.
McCooL, M. Analytic Antialiasing With Prism Splines. In Proc. SIGGRAPH (Aug. 1995), pp. 429-436.

McCooL, M. Shadow Volume Reconstruction. Tech. Rep. CS-98-06, University of Waterloo Department of Computer
Science, 1998.

McCooL, M. D. Shadow Volume Reconstruction from Depth Maps. ACM Trans. on Graphics 19, 1 (Jan. 2000), 1-26.

McCooL, M. D., ANG, J., AND AHMAD, A. Homomorphic Factorization of BRDFs for High-Performance Rendering.
In Proc. ACM SIGGRAPH (Aug. 2001).

McCooL, M. D., AND HEIDRICH, W. Texture Shaders. In Proc. Eurographics/SIGGRAPH Workshop on Graphics
Hardware (1999), pp. 117-126.

MCREYNOLDS, T., BLYTHE, D., GRANTHAM, B., AND NELSON, S. Advanced graphics programming techniques
using OpenGL. In SIGGRAPH 1998 Course Notes (July 1998).

MEYER, G. W. Wavelength Selection for Synthetic Image Generation. CVGIP 41 (1988), 57-79.

124

(93]

[94]

[95]
[96]
[97]
(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]
[110]
[111]
[112]

[113]

[114]

[115]

[116]

MILLER, G., AND HOFFMAN, R. Illumination and Reflection Maps: Simulated Objects in Simulated and Real Envi-
ronments. In SIGGRAPH 84 Course Notes — Advanced Computer Graphics Animation (July 1984).

MILLER, G. S. P., RUBIN, S., AND PONCELEON, D. Lazy Decompression of Surface Light Fields for Precomputed
Global Illumination. Nineth Eurographics Workshop on Rendering (June 1998), 281-292.

MINNAERT, M. The reciprocity principle in lunar photometry. Astrophysical Journal 93 (May 1941), 403—410.
MITCHELL, D. P. Robust ray intersection with interval arithmetic. In Proc. Graphics Interface (May 1990), pp. 68—74.
MOLLER, T., AND HAINES, E. Real-Time Rendering. A. K. Peters, 1999.

MOLNAR, S., EYLES, J., AND POULTON, J. PixelFlow: High-speed rendering using image composition. In Proc.
SIGGRAPH (July 1992), pp. 231-240.

NAYAR, S. K. Catadioptric omnidirectional camera. In IEEE Conference on Computer Vision and Pattern Recognition
(June 1997), pp. 482-488.

NEUMANN, L., AND NEUMANN, A. Photosimulation: interreflection with arbitrary reflectance models and illumina-
tions. Computer Graphics Forum 8, 1 (Mar. 1989), 21-34.

OFEK, E., AND RAPPOPORT, A. Interactive reflections on curved objects. In Proc. SIGGRAPH (July 1998), pp. 333—
342.

OLANO, M. A Programmable Pipeline for Graphics Hardware. PhD thesis, University of North Carolina at Chapel
Hill, 1999.

OLANO, M., AND LASTRA, A. A shading language on graphics hardware: The pixelflow shading system. In Proc.
SIGGRAPH (July 1998), pp. 159-168.

OWENS, J. D., DALLY, W. J., KAPASI, U. J., RIXNER, S., MATTSON, P., AND MOWERY, B. Polygon Rendering on
a Stream Architecture. In Proc. Eurographics/SIGGRAPH Workshop on Graphics Hardware (2000), pp. 23-32.

PEACHEY, D. Solid texturing of complex surfaces. In Proc. ACM SIGGRAPH (July 1985), pp. 279-286.

PEERCY, M. Linear Color Representations for Full Spectral Rendering. In Proc. ACM SIGGRAPH (Aug. 1993),
pp. 191-198.

PEERCY, M., AIREY, J., AND CABRAL, B. Efficient bump mapping hardware. In Computer Graphics (SIGGRAPH ’97
Proceedings) (Aug. 1997), pp. 303-306.

PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J. Interactive multi-pass programmable shading. Proceedings
of SIGGRAPH 2000 (July 2000), 425—432. ISBN 1-58113-208-5.

PERLIN, K. An image synthesizer. Computer Graphics (Proceedings of SIGGRAPH 85) 19, 3 (July 1985), 287-296.
PHONG, B.-T. Illumination for computer generated pictures. Comm. ACM 18, 6 (June 1975), 311-317.
POULIN, P., AND FOURNIER, A. A model for anisotropic reflection. In Proc. SIGGRAPH (Aug. 1990), pp. 273-282.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B. Numerical Recipes in C: The Art of Scientific
Computing (2nd ed.). Cambridge University Press, 1992.

PROUDFOOT, K., MARK, W. R., HANRAHAN, P., AND TZVETKOV, S. A Real-Time Procedural Shading System for
Programmable Graphics Hardware. In Proc. ACM SIGGRAPH (Aug. 2001), p. to appear.

RASO, M., AND FOURNIER, A. A Piecewise Polynomial Approach to Shading Using Spectral Distributions. In Proc.
Graphics Interface (June 1991), pp. 40-46.

REEVES, W., SALESIN, D., AND COOK, R. Rendering Antialiased Shadows with Depth Maps. In Proc. SIGGRAPH
(July 1987), vol. 21, pp. 283-291.

ROSSIGNAC, J., AND REQUICHA, A. Depth-Buffering Display Techniques for Constructive Solid Geometry. [EEE
CG&A 6,9 (1986), 29-39.

12-5

[117] RUSINKIEWICZ, S. A new change of variables for efficient BRDF representation. In Eurographics Workshop on
Rendering (June 1998), pp. 11-23.

[118] SALISBURY, M., WONG, M., HUGHES, J., AND SALESIN, D. Orientable textures for image-based pen-and-ink illus-
tration. In Proc. SIGGRAPH (Aug. 1997), pp. 401-406.

[119] SCHILLING, A., KNITTEL, G., AND STRASSER, W. Texram: A smart memory for texturing. IEEE Computer Graphics
and Applications 16, 3 (May 1996), 32-41.

[120] ScHLICK, C. A customizable reflectance model for everyday rendering. In Eurographics Workshop on Rendering (June
1993), pp. 73-84.

[121] SCHRAMM, M., GONDEK, J., AND MEYER, G. Light Scattering Simulations using Complex Subsurface Models. In
Proc. Graphics Interface (May 1997), pp. 56-67.

[122] SCHRODER, P., AND SWELDENS, W. Spherical Wavelets: Efficiently Representing Functions on the Sphere. In Proc.
SIGGRAPH (Aug. 1995), pp. 161-172.

[123] SEGAL, M., AND AKELEY, K. The OpenGL Graphics System: A Specification (Version 1.2.1), 1999.

[124] SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J., AND HAEBERLI, P. Fast shadow and lighting effects
using texture mapping. In Computer Graphics (SIGGRAPH 92 Proceedings) (July 1992), pp. 249-252.

[125] SLOAN, P.-P. J., AND COHEN, M. F. Interactive Horizon Mapping. In Rendering Techniques 00 (Proc. Eurographics
Workshop on Rendering) (2000), Springer, pp. 281-286.

[126] SLUSALLEK, P., STAMMINGER, M., HEIDRICH, W., POPP, J.-C., AND SEIDEL, H.-P. Composite Lighting Simula-
tions with Lighting Networks. IEEE CG&A 18, 2 (Mar. 1998), 22-31.

[127] SNYDER, J. M. Interval analysis for computer graphics. In Proc. ACM SIGGRAPH (July 1992), vol. 26, pp. 121-130.

[128] SOLER, C., AND SILLION, F. X. Fast Calculation of Soft Shadow Textures Using Convolution. In Proc. ACM SIG-
GRAPH (1998), pp. 321-332.

[129] STURZLINGER, W., AND BASTOS, R. Interactive Rendering of Globally Illuminated Glossy Scenes. In Eighth Euro-
graphics Workshop on Rendering Workshop (June 1997), Eurographics, pp. 93—102.

[130] TRENDALL, C., AND STEWART, A. J. General Calculations using Graphics Hardware, with Applications to Interactive
Caustics. In Rendering Techniques 00 (Proc. Eurographics Workshop on Rendering) (2000), Springer, pp. 287-298.

[131] TUMBLIN, J., AND RUSHMEIER, H. Tone reproduction for realistic images. IEEE CG&A 13, 6 (Nov. 1993), 42-48.

[132] UPSTILL, S. The RenderMan companion: A Programmer’s Guide to Realistic Computer Graphics. Addison-Wesley,
1990.

[133] VEACH, E., AND GUIBAS, L. Bidirectional Estimators for Light Transport. In Fifth Eurographics Workshop on Ren-
dering (June 1994), pp. 147-162.

[134] VEACH, E., AND GUIBAS, L. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Proc.
SIGGRAPH (Aug. 1995), pp. 419-428.

[135] VLACHOS, A., PETERS, J., BoyD, C., AND MITCHELL, J. L. Curved pn triangles. 2001 ACM Symposium on
Interactive 3D Graphics (March 2001), 159-166. ISBN 1-58113-292-1.

[136] VOORHIES, D., AND FORAN, J. Reflection Vector Shading Hardware. In Proc. SSIGGRAPH (July 1994), pp. 163—-166.

[137] WALTER, B., ALPPAY, G., LAFORTUNE, E., FERNANDEZ, S., AND GREENBERG, D. Fitting virtual lights For non-
diffuse walkthroughs. In Proc. SSIGGRAPH (Aug. 1997), pp. 45-48.

[138] WANGER, L. The effect of shadow quality on the perception of spatial relationships in computer generated imagery. In
SIGGRAPH Symp. on Interactive 3D Graphics (Mar. 1992), pp. 39-42.

[139] WARD, G. Measuring and modeling anisotropic reflection. In Proc. SIGGRAPH (July 1992), pp. 265-272.

12-6

[140] WARD, G. Towards More Practical Reflectance Measurements and Models. In Graphics Interface 92 Workshop on
Local Illumination (May 1992), pp. 15-21.

[141] WARD, G. The RADIANCE lighting simulation and rendering system. In Proc. ACM SIGGRAPH (July 1994), pp. 459—
472.

[142] WESTIN, S., ARVO, J., AND TORRANCE, K. Predicting Reflectance Functions From Complex Surfaces. In Proc.
SIGGRAPH (July 1992), pp. 255-264.

[143] WILLIAMS, L. Casting curved shadows on curved surfaces. In Proc. SIGGRAPH (Aug. 1978), vol. 12, pp. 270-274.
[144] WILLIAMS, L. Pyramidal parametrics. In Computer Graphics (SIGGRAPH ’83 Proceedings) (July 1983), pp. 1-11.

[145] W00, A., POULIN, P., AND FOURNIER, A. A Survey of Shadow Algorithms. IEEE CG&A 10, 6 (Nov. 1990), 13-32.

12-7

